-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathexample.py
55 lines (44 loc) · 1.39 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
# Copyright (c) 2017, Danyang 'Frank' Li <[email protected]>
from gibbs import direct_dpmm_gibbs
from gibbs import collapsed_dpmm_gibbs
from matplotlib import pyplot as plt
plt.style.use('ggplot')
x = [4.0429277,10.71686209,10.73144389,5.05700962,4.70910861,1.38603028,-12.87114683,0.90842492,2.26485196,0.3287409, 1.85740593, -0.08981766, 0.11817958, 0.60973202, 1.88309994,
1.47112954, 0.77061995, 1.24543065, 1.92506892, 0.7578275, -30.12442321]
# mu = np.empty(len(x));
# loglikelihood = np.empty(len(x));
#
# gaussian = UnivariateGaussian(mu=2)
# result = test.rvs(10)
#
#
# plt.plot(result)
# plt.show()
##SAMPLE THETA
# for idx,xi in enumerate(x):
# mu[idx] = gaussian.sample_new_mu(xi)
#
# for idx, (x_i, mu_i) in enumerate(zip(x, mu)):
# loglikelihood[idx] = gaussian.log_likelihood(x_i,mu_i)
#
# plt.plot(x)
# plt.show()
# print(loglikelihood)
#sample = gaussian.sample_discrete(loglikelihood)
##Direct Gibbs sampling for DPMM
init_K = 5
alpha_prior = {'a':1,'b':2}
observation_prior = {'mu':0,'sigma':10}
# gibbs = direct_dpmm_gibbs(init_K,x,alpha_prior)
#
# iter = 50
# for i in range(0,iter):
# print('Iter: '+ str(i))
# gibbs.sample_z()
# gibbs.sample_mu()
# gibbs.sample_alpha_0()
collapsed_gibbs = collapsed_dpmm_gibbs(init_K,x,alpha_prior,observation_prior)
iter = 50
for i in range(0,iter):
collapsed_gibbs.sample_z()
collapsed_gibbs.sample_alpha_0()