-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
229 lines (193 loc) · 7.97 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
# coding: utf-8
# Author: lingff ([email protected])
# Description: For EfficientNet V2 utils.
# Create: 2021-12-2
import re
import collections
################################################################################
# Helper functions for loading model params
################################################################################
# BlockDecoder: A Class for encoding and decoding BlockArgs
# efficientnet_params: A function to query compound coefficient
# get_model_params and efficientnet:
# Functions to get BlockArgs and GlobalParams for efficientnet
# url_map and url_map_advprop: Dicts of url_map for pretrained weights
# load_pretrained_weights: A function to load pretrained weights
# Parameters for the entire model (stem, all blocks, and head)
GlobalParams = collections.namedtuple('GlobalParams', [
'width_coefficient', 'depth_coefficient', 'image_size', 'dropout_rate',
'num_classes', 'batch_norm_momentum', 'batch_norm_epsilon',
'drop_connect_rate', 'depth_divisor', 'min_depth', 'include_top'])
# Parameters for an individual model block
BlockArgs = collections.namedtuple('BlockArgs', [
'num_repeat', 'kernel_size', 'stride', 'expand_ratio',
'input_filters', 'output_filters', 'se_ratio', 'id_skip', 'fused'])
class BlockDecoder(object):
"""Block Decoder for readability,
straight from the official TensorFlow repository.
"""
@staticmethod
def _decode_block_string(block_string):
"""Get a block through a string notation of arguments.
Args:
block_string (str): A string notation of arguments.
Examples: 'r1_k3_s11_e1_i32_o16_se0.25_noskip'.
Returns:
BlockArgs: The namedtuple defined at the top of this file.
"""
assert isinstance(block_string, str)
ops = block_string.split('_')
options = {}
for op in ops:
splits = re.split(r'(\d.*)', op)
if len(splits) >= 2:
key, value = splits[:2]
options[key] = value
# Check stride
assert (('s' in options and len(options['s']) == 1) or
(len(options['s']) == 2 and options['s'][0] == options['s'][1]))
return BlockArgs(
num_repeat=int(options['r']),
kernel_size=int(options['k']),
stride=[int(options['s'][0])],
expand_ratio=int(options['e']),
input_filters=int(options['i']),
output_filters=int(options['o']),
se_ratio=float(options['se']) if 'se' in options else None,
fused=('f' in block_string),
id_skip=('noskip' not in block_string))
@staticmethod
def decode(string_list):
"""Decode a list of string notations to specify blocks inside the network.
Args:
string_list (list[str]): A list of strings, each string is a notation of block.
Returns:
blocks_args: A list of BlockArgs namedtuples of block args.
"""
assert isinstance(string_list, list)
blocks_args = []
for block_string in string_list:
blocks_args.append(BlockDecoder._decode_block_string(block_string))
return blocks_args
def get_efficientnetv2_params(model_name, num_classes):
#################### EfficientNet V2 configs ####################
v2_base_block = [ # The baseline config for v2 models.
'r1_k3_s1_e1_i32_o16_f',
'r2_k3_s2_e4_i16_o32_f',
'r2_k3_s2_e4_i32_o48_f',
'r3_k3_s2_e4_i48_o96_se0.25',
'r5_k3_s1_e6_i96_o112_se0.25',
'r8_k3_s2_e6_i112_o192_se0.25',
]
v2_s_block = [ # about base * (width1.4, depth1.8)
'r2_k3_s1_e1_i24_o24_f',
'r4_k3_s2_e4_i24_o48_f',
'r4_k3_s2_e4_i48_o64_f',
'r6_k3_s2_e4_i64_o128_se0.25',
'r9_k3_s1_e6_i128_o160_se0.25',
'r15_k3_s2_e6_i160_o256_se0.25',
]
v2_m_block = [ # about base * (width1.6, depth2.2)
'r3_k3_s1_e1_i24_o24_f',
'r5_k3_s2_e4_i24_o48_f',
'r5_k3_s2_e4_i48_o80_f',
'r7_k3_s2_e4_i80_o160_se0.25',
'r14_k3_s1_e6_i160_o176_se0.25',
'r18_k3_s2_e6_i176_o304_se0.25',
'r5_k3_s1_e6_i304_o512_se0.25',
]
v2_l_block = [ # about base * (width2.0, depth3.1)
'r4_k3_s1_e1_i32_o32_f',
'r7_k3_s2_e4_i32_o64_f',
'r7_k3_s2_e4_i64_o96_f',
'r10_k3_s2_e4_i96_o192_se0.25',
'r19_k3_s1_e6_i192_o224_se0.25',
'r25_k3_s2_e6_i224_o384_se0.25',
'r7_k3_s1_e6_i384_o640_se0.25',
]
v2_xl_block = [ # only for 21k pretraining.
'r4_k3_s1_e1_i32_o32_f',
'r8_k3_s2_e4_i32_o64_f',
'r8_k3_s2_e4_i64_o96_f',
'r16_k3_s2_e4_i96_o192_se0.25',
'r24_k3_s1_e6_i192_o256_se0.25',
'r32_k3_s2_e6_i256_o512_se0.25',
'r8_k3_s1_e6_i512_o640_se0.25',
]
efficientnetv2_params = {
# (block, width, depth, train_size, eval_size, dropout, randaug, mixup, aug)
'efficientnetv2-s': # 83.9% @ 22M
(v2_s_block, 1.0, 1.0, 300, 384, 0.2, 10, 0, 'randaug'),
'efficientnetv2-m': # 85.2% @ 54M
(v2_m_block, 1.0, 1.0, 384, 480, 0.3, 15, 0.2, 'randaug'),
'efficientnetv2-l': # 85.7% @ 120M
(v2_l_block, 1.0, 1.0, 384, 480, 0.4, 20, 0.5, 'randaug'),
'efficientnetv2-xl':
(v2_xl_block, 1.0, 1.0, 384, 512, 0.4, 20, 0.5, 'randaug'),
# For fair comparison to EfficientNetV1, using the same scaling and autoaug.
'efficientnetv2-b0': # 78.7% @ 7M params
(v2_base_block, 1.0, 1.0, 192, 224, 0.2, 0, 0, 'effnetv1_autoaug'),
'efficientnetv2-b1': # 79.8% @ 8M params
(v2_base_block, 1.0, 1.1, 192, 240, 0.2, 0, 0, 'effnetv1_autoaug'),
'efficientnetv2-b2': # 80.5% @ 10M params
(v2_base_block, 1.1, 1.2, 208, 260, 0.3, 0, 0, 'effnetv1_autoaug'),
'efficientnetv2-b3': # 82.1% @ 14M params
(v2_base_block, 1.2, 1.4, 240, 300, 0.3, 0, 0, 'effnetv1_autoaug'),
}
assert model_name in list(efficientnetv2_params.keys()), "Wrong model name."
all_params = efficientnetv2_params[model_name]
blocks_args = BlockDecoder.decode(all_params[0])
global_params = GlobalParams(
width_coefficient=all_params[1],
depth_coefficient=all_params[2],
image_size=all_params[3],
dropout_rate=all_params[5],
num_classes=num_classes,
batch_norm_momentum=None, #0.99,
batch_norm_epsilon=None, #1e-3,
drop_connect_rate=None, #drop_connect_rate,
depth_divisor=None, #8,
min_depth=None, #None,
include_top=None, #include_top,
)
return blocks_args, global_params
class AverageMeter(object):
"""Computes and stores the average and current value
Imported from https://github.com/pytorch/examples/blob/master/imagenet/main.py#L247-L262
"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
# # Myself, not good
# def accuracy(preds, targets):
# with torch.no_grad():
# batch_size = targets.size(0)
# pred_index = torch.argmax(preds, dim=1)
# correct = pred_index.eq(targets.view(1, -1))
# acc1 = correct.sum().float().mul_(100.0 / batch_size)
# return acc1
# good
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
if __name__ == '__main__':
b, g = get_efficientnetv2_params("efficientnetv2-s", 10)
print(b[0].input_filters)