diff --git a/explorer/civsoc.py b/explorer/civsoc.py
index b1d364f..769445e 100644
--- a/explorer/civsoc.py
+++ b/explorer/civsoc.py
@@ -1102,7 +1102,7 @@ def get_cs_df():
"AO03": "Independent expert bodies",
"AO04": "Data protection authorities",
"AO05": "Audit courts",
- "AO06": "Civil society organisations",
+ "AO06": "The media",
}
)
# Here, FR is coded differently
@@ -1113,7 +1113,7 @@ def get_cs_df():
"AO03": "Independent expert bodies",
"AO04": "Data protection authorities",
"AO07": "Audit courts",
- "AO06": "Civil society organisations",
+ "AO06": "Media organisations",
}
)
@@ -1229,6 +1229,13 @@ def get_cs_df():
merged_markdown = read_markdown_file("explorer/markdown/media.md")
st.markdown(merged_markdown, unsafe_allow_html=True)
+ col1, col2 = st.columns(2)
+ col1.metric("Civil Society Representatives", len(df[filter].index))
+ col2.metric(
+ "Cumulative years spent working on SBIA",
+ int(df[filter]["CSexpertise1"].sum()),
+ )
+
st.write("### Country `[country]`")
country_counts = df[filter]["country"].value_counts()
st.plotly_chart(
@@ -3247,7 +3254,7 @@ def get_cs_df():
"Independent expert bodies",
"Data protection authorities",
"Audit courts",
- "CSOs | The media",
+ "The media",
]
st.write(
diff --git a/explorer/media.py b/explorer/media.py
index ce54e1f..e981174 100644
--- a/explorer/media.py
+++ b/explorer/media.py
@@ -1038,6 +1038,13 @@ def get_ms_df():
merged_markdown = read_markdown_file("explorer/markdown/media.md")
st.markdown(merged_markdown, unsafe_allow_html=True)
+ col1, col2 = st.columns(2)
+ col1.metric("Media representatives", len(df[filter].index))
+ col2.metric(
+ "Cumulative years spent working on SBIA",
+ int(df[filter]["MSexpertise1"].sum()),
+ )
+
st.write("### Country `[country]`")
country_counts = df[filter]["country"].value_counts()
st.plotly_chart(
@@ -1045,7 +1052,8 @@ def get_ms_df():
df[filter],
values=country_counts,
names=country_counts.index,
- )
+ ),
+ use_container_width=True,
)
if section == "Resources":
@@ -1068,7 +1076,8 @@ def get_ms_df():
"Freelance": px.colors.qualitative.Prism[4],
"Other": px.colors.qualitative.Prism[10],
},
- )
+ ),
+ use_container_width=True,
)
st.write(
@@ -1087,7 +1096,8 @@ def get_ms_df():
"United Kingdom": px.colors.qualitative.Prism[7],
},
labels={"MShr2": "days per month"},
- )
+ ),
+ use_container_width=True,
)
st.plotly_chart(
@@ -1102,7 +1112,8 @@ def get_ms_df():
"France": px.colors.qualitative.Prism[1],
"United Kingdom": px.colors.qualitative.Prism[7],
},
- )
+ ),
+ use_container_width=True,
)
st.write("### Which type of medium do you work for? `[MShr3]`")
@@ -1139,7 +1150,8 @@ def get_ms_df():
"United Kingdom": px.colors.qualitative.Prism[7],
},
labels={"count": "people who work for this medium"},
- )
+ ),
+ use_container_width=True,
)
st.write(
@@ -1160,7 +1172,8 @@ def get_ms_df():
"I don't know": px.colors.qualitative.Prism[10],
"I prefer not to say": px.colors.qualitative.Prism[10],
},
- )
+ ),
+ use_container_width=True,
)
st.write("## Expertise")
@@ -1181,7 +1194,8 @@ def get_ms_df():
"United Kingdom": px.colors.qualitative.Prism[7],
},
labels={"MSexpertise1": "years"},
- )
+ ),
+ use_container_width=True,
)
st.plotly_chart(
@@ -1196,7 +1210,8 @@ def get_ms_df():
"France": px.colors.qualitative.Prism[1],
"United Kingdom": px.colors.qualitative.Prism[7],
},
- )
+ ),
+ use_container_width=True,
)
st.write(
@@ -1219,7 +1234,8 @@ def get_ms_df():
"I don't know": px.colors.qualitative.Prism[10],
"I prefer not to say": px.colors.qualitative.Prism[10],
},
- )
+ ),
+ use_container_width=True,
)
st.write(
@@ -1242,7 +1258,8 @@ def get_ms_df():
"I don't know": px.colors.qualitative.Prism[10],
"I prefer not to say": px.colors.qualitative.Prism[10],
},
- )
+ ),
+ use_container_width=True,
)
st.write(
@@ -1265,7 +1282,8 @@ def get_ms_df():
"I don't know": px.colors.qualitative.Prism[10],
"I prefer not to say": px.colors.qualitative.Prism[10],
},
- )
+ ),
+ use_container_width=True,
)
st.write("## Financial Resources")
@@ -1290,7 +1308,8 @@ def get_ms_df():
"I don't know": px.colors.qualitative.Prism[10],
"I prefer not to say": px.colors.qualitative.Prism[10],
},
- )
+ ),
+ use_container_width=True,
)
st.write(
@@ -1309,7 +1328,8 @@ def get_ms_df():
"I don't know": px.colors.qualitative.Prism[10],
"I prefer not to say": px.colors.qualitative.Prism[10],
},
- )
+ ),
+ use_container_width=True,
)
st.write("## Freedom of Information")
@@ -1330,7 +1350,8 @@ def get_ms_df():
"I don't know": px.colors.qualitative.Prism[10],
"I prefer not to say": px.colors.qualitative.Prism[10],
},
- )
+ ),
+ use_container_width=True,
)
st.write("### How often did you request information? `[MSfoi2]`")
@@ -1347,7 +1368,8 @@ def get_ms_df():
"United Kingdom": px.colors.qualitative.Prism[7],
},
labels={"MSfoi2": "Number of requests"},
- )
+ ),
+ use_container_width=True,
)
st.plotly_chart(
@@ -1362,7 +1384,8 @@ def get_ms_df():
"France": px.colors.qualitative.Prism[1],
"United Kingdom": px.colors.qualitative.Prism[7],
},
- )
+ ),
+ use_container_width=True,
)
st.write(
@@ -1382,7 +1405,8 @@ def get_ms_df():
"I don't know": px.colors.qualitative.Prism[10],
"I prefer not to say": px.colors.qualitative.Prism[10],
},
- )
+ ),
+ use_container_width=True,
)
st.write(
@@ -1395,7 +1419,8 @@ def get_ms_df():
df[filter],
values=protectops2_counts,
names=protectops2_counts.index,
- )
+ ),
+ use_container_width=True,
)
st.write(
@@ -1435,7 +1460,8 @@ def get_ms_df():
"United Kingdom": px.colors.qualitative.Prism[7],
},
labels={"count": "people who answered 'Yes'"},
- )
+ ),
+ use_container_width=True,
)
st.write("## Appreciation")
@@ -1456,7 +1482,8 @@ def get_ms_df():
"I don't know": px.colors.qualitative.Prism[10],
"I prefer not to say": px.colors.qualitative.Prism[10],
},
- )
+ ),
+ use_container_width=True,
)
st.write(
@@ -1475,7 +1502,8 @@ def get_ms_df():
"I don't know": px.colors.qualitative.Prism[10],
"I prefer not to say": px.colors.qualitative.Prism[10],
},
- )
+ ),
+ use_container_width=True,
)
if section == "Media Reporting":
@@ -1499,7 +1527,8 @@ def get_ms_df():
"United Kingdom": px.colors.qualitative.Prism[7],
},
labels={"MSsoc1": "pieces produced lasy year"},
- )
+ ),
+ use_container_width=True,
)
st.plotly_chart(
@@ -1514,7 +1543,8 @@ def get_ms_df():
"France": px.colors.qualitative.Prism[1],
"United Kingdom": px.colors.qualitative.Prism[7],
},
- )
+ ),
+ use_container_width=True,
)
st.write(
@@ -1535,7 +1565,8 @@ def get_ms_df():
labels={
"MSsoc2": "pieces focused on surveillance by intelligence agencies"
},
- )
+ ),
+ use_container_width=True,
)
st.plotly_chart(
@@ -1550,7 +1581,8 @@ def get_ms_df():
"France": px.colors.qualitative.Prism[1],
"United Kingdom": px.colors.qualitative.Prism[7],
},
- )
+ ),
+ use_container_width=True,
)
MSsoc1_list = df[filter]["MSsoc1"].to_list()
@@ -1565,7 +1597,8 @@ def get_ms_df():
"pieces focused
on surveillance
by intelligence",
],
colors=[px.colors.qualitative.Prism[0], px.colors.qualitative.Prism[2]],
- )
+ ),
+ use_container_width=True,
)
df_comp = df[filter][["MSsoc1", "country"]].dropna()
@@ -1590,7 +1623,8 @@ def get_ms_df():
"France": px.colors.qualitative.Prism[1],
"United Kingdom": px.colors.qualitative.Prism[7],
},
- )
+ ),
+ use_container_width=True,
)
st.write(
@@ -1612,7 +1646,8 @@ def get_ms_df():
"I don't know": px.colors.qualitative.Prism[10],
"I prefer not to say": px.colors.qualitative.Prism[10],
},
- )
+ ),
+ use_container_width=True,
)
st.write(
@@ -1649,7 +1684,8 @@ def get_ms_df():
"United Kingdom": px.colors.qualitative.Prism[7],
},
labels={"count": "people who answered 'Yes'"},
- )
+ ),
+ use_container_width=True,
)
st.write("### If you selected ‘other’, please specify `[MSsoc5other]`")
@@ -1690,7 +1726,8 @@ def get_ms_df():
"United Kingdom": px.colors.qualitative.Prism[7],
},
labels={"count": "people who answered 'Yes'"},
- )
+ ),
+ use_container_width=True,
)
st.write("### If you selected ‘other’, please specify `[MSsoc6other]`")
@@ -1719,7 +1756,8 @@ def get_ms_df():
"I don't know": px.colors.qualitative.Prism[10],
"I prefer not to say": px.colors.qualitative.Prism[10],
},
- )
+ ),
+ use_container_width=True,
)
st.write(
@@ -1741,7 +1779,8 @@ def get_ms_df():
"I don't know": px.colors.qualitative.Prism[10],
"I prefer not to say": px.colors.qualitative.Prism[10],
},
- )
+ ),
+ use_container_width=True,
)
st.write(
@@ -1760,7 +1799,8 @@ def get_ms_df():
"I don't know": px.colors.qualitative.Prism[10],
"I prefer not to say": px.colors.qualitative.Prism[10],
},
- )
+ ),
+ use_container_width=True,
)
st.write("## Perceived Impact")
@@ -1800,7 +1840,8 @@ def get_ms_df():
"United Kingdom": px.colors.qualitative.Prism[7],
},
labels={"count": "people who answered 'Yes'"},
- )
+ ),
+ use_container_width=True,
)
st.write(
@@ -1839,7 +1880,8 @@ def get_ms_df():
"United Kingdom": px.colors.qualitative.Prism[7],
},
labels={"count": "people who answered 'Yes'"},
- )
+ ),
+ use_container_width=True,
)
st.write("### If you selected ‘other’, please specify `[MSimpact2other]`")
@@ -1928,7 +1970,8 @@ def get_ms_df():
values=MSprotectops2_counts,
names=MSprotectops2_counts.index,
color_discrete_sequence=px.colors.qualitative.Prism,
- )
+ ),
+ use_container_width=True,
)
st.write(
@@ -2053,7 +2096,8 @@ def get_ms_df():
"I don't know": px.colors.qualitative.Prism[10],
"I prefer not to say": px.colors.qualitative.Prism[10],
},
- )
+ ),
+ use_container_width=True,
)
st.write("## Legal Protection")
@@ -2079,7 +2123,8 @@ def get_ms_df():
"I don't know": px.colors.qualitative.Prism[10],
"I prefer not to say": px.colors.qualitative.Prism[10],
},
- )
+ ),
+ use_container_width=True,
)
st.write(
@@ -2100,7 +2145,8 @@ def get_ms_df():
"I don't know": px.colors.qualitative.Prism[10],
"I prefer not to say": px.colors.qualitative.Prism[10],
},
- )
+ ),
+ use_container_width=True,
)
st.write(
@@ -2246,7 +2292,8 @@ def get_ms_df():
"I don't know": px.colors.qualitative.Prism[10],
"I prefer not to say": px.colors.qualitative.Prism[10],
},
- )
+ ),
+ use_container_width=True,
)
st.write("## Rights to Access")
@@ -2267,7 +2314,8 @@ def get_ms_df():
"I don't know": px.colors.qualitative.Prism[10],
"I prefer not to say": px.colors.qualitative.Prism[10],
},
- )
+ ),
+ use_container_width=True,
)
st.write("### Have you ever made use of this right? `[MSprotectrta2]`")
@@ -2284,7 +2332,8 @@ def get_ms_df():
"I don't know": px.colors.qualitative.Prism[10],
"I prefer not to say": px.colors.qualitative.Prism[10],
},
- )
+ ),
+ use_container_width=True,
)
st.write(
@@ -2303,7 +2352,8 @@ def get_ms_df():
"I don't know": px.colors.qualitative.Prism[10],
"I prefer not to say": px.colors.qualitative.Prism[10],
},
- )
+ ),
+ use_container_width=True,
)
st.write(
@@ -2322,7 +2372,8 @@ def get_ms_df():
"I don't know": px.colors.qualitative.Prism[10],
"I prefer not to say": px.colors.qualitative.Prism[10],
},
- )
+ ),
+ use_container_width=True,
)
st.write(
@@ -2342,7 +2393,8 @@ def get_ms_df():
"I don't know": px.colors.qualitative.Prism[10],
"I prefer not to say": px.colors.qualitative.Prism[10],
},
- )
+ ),
+ use_container_width=True,
)
st.write(
@@ -2368,7 +2420,8 @@ def get_ms_df():
"I don't know": px.colors.qualitative.Prism[10],
"I prefer not to say": px.colors.qualitative.Prism[10],
},
- )
+ ),
+ use_container_width=True,
)
if section == "Constraints":
@@ -2392,7 +2445,8 @@ def get_ms_df():
"I don't know": px.colors.qualitative.Prism[10],
"I prefer not to say": px.colors.qualitative.Prism[10],
},
- )
+ ),
+ use_container_width=True,
)
st.write(
@@ -2411,7 +2465,8 @@ def get_ms_df():
"I don't know": px.colors.qualitative.Prism[10],
"I prefer not to say": px.colors.qualitative.Prism[10],
},
- )
+ ),
+ use_container_width=True,
)
st.write(
@@ -2430,7 +2485,8 @@ def get_ms_df():
"United Kingdom": px.colors.qualitative.Prism[7],
},
labels={"MSconstraintcen3": "times"},
- )
+ ),
+ use_container_width=True,
)
st.write(
@@ -2449,7 +2505,8 @@ def get_ms_df():
"I don't know": px.colors.qualitative.Prism[10],
"I prefer not to say": px.colors.qualitative.Prism[10],
},
- )
+ ),
+ use_container_width=True,
)
st.write("### If you selected ‘yes’, please specify `[MSconstraintcen4spec]`")
@@ -2473,7 +2530,8 @@ def get_ms_df():
"I don't know": px.colors.qualitative.Prism[10],
"I prefer not to say": px.colors.qualitative.Prism[10],
},
- )
+ ),
+ use_container_width=True,
)
st.write("### If you selected ‘yes’, please specify `[MSconstraintcen5spec]`")
@@ -2501,7 +2559,8 @@ def get_ms_df():
"I don't know": px.colors.qualitative.Prism[10],
"I prefer not to say": px.colors.qualitative.Prism[10],
},
- )
+ ),
+ use_container_width=True,
)
st.write(
@@ -2527,7 +2586,8 @@ def get_ms_df():
values=MSconstraintinter3_counts,
names=MSconstraintinter3_counts.index,
color_discrete_sequence=px.colors.qualitative.Prism,
- )
+ ),
+ use_container_width=True,
)
st.write(
@@ -2827,7 +2887,8 @@ def get_ms_df():
values=MSattitude1_counts,
names=MSattitude1_counts.index,
color_discrete_sequence=px.colors.qualitative.Prism,
- )
+ ),
+ use_container_width=True,
)
# Pie chart MSattitudes (MSattitude2)
@@ -2842,7 +2903,8 @@ def get_ms_df():
values=MSattitude2_counts,
names=MSattitude2_counts.index,
color_discrete_sequence=px.colors.qualitative.Prism,
- )
+ ),
+ use_container_width=True,
)
# Histogram (MSattitude3)
@@ -2871,7 +2933,7 @@ def get_ms_df():
)
MSattitude3_df = MSattitude3_df.drop_duplicates()
st.plotly_chart(
- generate_histogram(
+ render_histogram(
df=MSattitude3_df,
x="option",
y="count",
@@ -2883,7 +2945,8 @@ def get_ms_df():
"United Kingdom": px.colors.qualitative.Prism[7],
},
labels={"count": "people who answered 'Yes'"},
- )
+ ),
+ use_container_width=True,
)
scoring = {1: 6, 2: 5, 3: 4, 4: 3, 5: 2, 6: 1}
@@ -2899,17 +2962,17 @@ def get_ms_df():
st.write(
"### Which of the following actors do you trust the most to **enable public debate** on surveillance by intelligence agencies? `[MSattitude4]`"
)
- st.plotly_chart(render_ranking_plot("MSattitude4"))
+ st.plotly_chart(render_ranking_plot("MSattitude4"), use_container_width=True)
st.write(
"### Which of the following actors do you trust the most to **contest surveillance** by intelligence agencies? `[MSattitude5]`"
)
- st.plotly_chart(render_ranking_plot("MSattitude5"))
+ st.plotly_chart(render_ranking_plot("MSattitude5"), use_container_width=True)
st.write(
"### Which of the following actors do you trust the most to **enforce compliance** regarding surveillance by intelligence agencies? `[MSattitude6]`"
)
- st.plotly_chart(render_ranking_plot("MSattitude6"))
+ st.plotly_chart(render_ranking_plot("MSattitude6"), use_container_width=True)
if section == "Appendix":
diff --git a/explorer/merged.py b/explorer/merged.py
index cf6d263..9b3aaeb 100644
--- a/explorer/merged.py
+++ b/explorer/merged.py
@@ -958,6 +958,23 @@ def get_merged_ms_df():
merged_markdown = read_markdown_file("explorer/markdown/merged.md")
st.markdown(merged_markdown, unsafe_allow_html=True)
+ col1, col2 = st.columns(2)
+ col1.metric("Respondents", len(df[filter].index))
+ col2.metric(
+ "Cumulative years spent working on SBIA",
+ int(df[filter]["expertise1"].sum()),
+ )
+
+ col1, col2 = st.columns(2)
+ col1.metric(
+ "Media representatives",
+ len(df[filter & (df.surveytype == "Media Scrutiny")].index),
+ )
+ col2.metric(
+ "Civil Society representatives",
+ len(df[filter & (df.surveytype == "Civil Society Scrutiny")].index),
+ )
+
st.write("### Country `[country]`")
country_counts = df[filter]["country"].value_counts()
st.plotly_chart(
@@ -965,7 +982,8 @@ def get_merged_ms_df():
df[filter],
values=country_counts,
names=country_counts.index,
- )
+ ),
+ use_container_width=True,
)
st.write("### Surveytype `[surveytype]`")
@@ -975,7 +993,8 @@ def get_merged_ms_df():
df[filter],
values=surveytype_counts,
names=surveytype_counts.index,
- )
+ ),
+ use_container_width=True,
)
if section == "Resources":
@@ -998,7 +1017,8 @@ def get_merged_ms_df():
"Freelance": px.colors.qualitative.Prism[4],
"Other": px.colors.qualitative.Prism[10],
},
- )
+ ),
+ use_container_width=True,
)
st.write(
@@ -1017,7 +1037,8 @@ def get_merged_ms_df():
"United Kingdom": px.colors.qualitative.Prism[7],
},
labels={"hr2": "days per month"},
- )
+ ),
+ use_container_width=True,
)
st.plotly_chart(
@@ -1032,7 +1053,8 @@ def get_merged_ms_df():
"France": px.colors.qualitative.Prism[1],
"United Kingdom": px.colors.qualitative.Prism[7],
},
- )
+ ),
+ use_container_width=True,
)
df["hr2_more_than_five"] = np.where(df["hr2"] > 5, True, False)
@@ -1046,7 +1068,8 @@ def get_merged_ms_df():
values=hr2_more_than_five_counts,
names=hr2_more_than_five_counts.index,
color=hr2_more_than_five_counts.index,
- )
+ ),
+ use_container_width=True,
)
st.write("## Expertise")
@@ -1067,7 +1090,8 @@ def get_merged_ms_df():
"United Kingdom": px.colors.qualitative.Prism[7],
},
labels={"expertise1": "years"},
- )
+ ),
+ use_container_width=True,
)
st.plotly_chart(
@@ -1082,7 +1106,8 @@ def get_merged_ms_df():
"France": px.colors.qualitative.Prism[1],
"United Kingdom": px.colors.qualitative.Prism[7],
},
- )
+ ),
+ use_container_width=True,
)
st.write(
@@ -1105,7 +1130,8 @@ def get_merged_ms_df():
"I don't know": px.colors.qualitative.Prism[10],
"I prefer not to say": px.colors.qualitative.Prism[10],
},
- )
+ ),
+ use_container_width=True,
)
st.write(
@@ -1128,7 +1154,8 @@ def get_merged_ms_df():
"I don't know": px.colors.qualitative.Prism[10],
"I prefer not to say": px.colors.qualitative.Prism[10],
},
- )
+ ),
+ use_container_width=True,
)
st.write(
@@ -1151,7 +1178,8 @@ def get_merged_ms_df():
"I don't know": px.colors.qualitative.Prism[10],
"I prefer not to say": px.colors.qualitative.Prism[10],
},
- )
+ ),
+ use_container_width=True,
)
st.write("## Financial Resources")
@@ -1197,7 +1225,8 @@ def get_merged_ms_df():
"I don't know": px.colors.qualitative.Prism[10],
"I prefer not to say": px.colors.qualitative.Prism[10],
},
- )
+ ),
+ use_container_width=True,
)
st.write("### How often did you request information? `[foi2]`")
@@ -1214,7 +1243,8 @@ def get_merged_ms_df():
"United Kingdom": px.colors.qualitative.Prism[7],
},
labels={"foi2": "Number of requests"},
- )
+ ),
+ use_container_width=True,
)
st.plotly_chart(
@@ -1229,7 +1259,8 @@ def get_merged_ms_df():
"France": px.colors.qualitative.Prism[1],
"United Kingdom": px.colors.qualitative.Prism[7],
},
- )
+ ),
+ use_container_width=True,
)
st.write(
@@ -1249,7 +1280,8 @@ def get_merged_ms_df():
"I don't know": px.colors.qualitative.Prism[10],
"I prefer not to say": px.colors.qualitative.Prism[10],
},
- )
+ ),
+ use_container_width=True,
)
st.write(
@@ -1262,7 +1294,8 @@ def get_merged_ms_df():
df[filter],
values=foi4_counts,
names=foi4_counts.index,
- )
+ ),
+ use_container_width=True,
)
st.write(
@@ -1301,7 +1334,8 @@ def get_merged_ms_df():
"United Kingdom": px.colors.qualitative.Prism[7],
},
labels={"count": "people who answered 'Yes'"},
- )
+ ),
+ use_container_width=True,
)
st.write("### If you selected ‘other’, please specify `[foi5other]`")
@@ -1389,7 +1423,8 @@ def get_merged_ms_df():
values=protectops2_counts,
names=protectops2_counts.index,
color_discrete_sequence=px.colors.qualitative.Prism,
- )
+ ),
+ use_container_width=True,
)
st.write(
@@ -1514,7 +1549,8 @@ def get_merged_ms_df():
"I don't know": px.colors.qualitative.Prism[10],
"I prefer not to say": px.colors.qualitative.Prism[10],
},
- )
+ ),
+ use_container_width=True,
)
st.write("## Legal Protection")
@@ -1540,7 +1576,8 @@ def get_merged_ms_df():
"I don't know": px.colors.qualitative.Prism[10],
"I prefer not to say": px.colors.qualitative.Prism[10],
},
- )
+ ),
+ use_container_width=True,
)
st.write(
@@ -1561,7 +1598,8 @@ def get_merged_ms_df():
"I don't know": px.colors.qualitative.Prism[10],
"I prefer not to say": px.colors.qualitative.Prism[10],
},
- )
+ ),
+ use_container_width=True,
)
st.write("### If you selected ‘no’, please specify `[protectleg2no]`")
@@ -1654,7 +1692,8 @@ def get_merged_ms_df():
"I don't know": px.colors.qualitative.Prism[10],
"I prefer not to say": px.colors.qualitative.Prism[10],
},
- )
+ ),
+ use_container_width=True,
)
st.write(
@@ -1680,7 +1719,8 @@ def get_merged_ms_df():
values=constraintinter3_counts,
names=constraintinter3_counts.index,
color_discrete_sequence=px.colors.qualitative.Prism,
- )
+ ),
+ use_container_width=True,
)
st.write(
@@ -1896,7 +1936,8 @@ def get_merged_ms_df():
values=attitude1_counts,
names=attitude1_counts.index,
color_discrete_sequence=px.colors.qualitative.Prism,
- )
+ ),
+ use_container_width=True,
)
st.write(
@@ -1910,7 +1951,8 @@ def get_merged_ms_df():
values=attitude2_counts,
names=attitude2_counts.index,
color_discrete_sequence=px.colors.qualitative.Prism,
- )
+ ),
+ use_container_width=True,
)
st.write(
@@ -1939,7 +1981,7 @@ def get_merged_ms_df():
attitude3_df = attitude3_df.drop_duplicates()
st.plotly_chart(
- generate_histogram(
+ render_histogram(
df=attitude3_df,
x="option",
y="count",
@@ -1951,7 +1993,8 @@ def get_merged_ms_df():
"United Kingdom": px.colors.qualitative.Prism[7],
},
labels={"count": "people who answered 'Yes'"},
- )
+ ),
+ use_container_width=True,
)
scoring = {1: 6, 2: 5, 3: 4, 4: 3, 5: 2, 6: 1}
@@ -1967,17 +2010,17 @@ def get_merged_ms_df():
st.write(
"### Which of the following actors do you trust the most to **enable public debate** on surveillance by intelligence agencies? `[attitude4]`"
)
- st.plotly_chart(render_ranking_plot("attitude4"))
+ st.plotly_chart(render_ranking_plot("attitude4"), use_container_width=True)
st.write(
"### Which of the following actors do you trust the most to **contest surveillance** by intelligence agencies? `[attitude5]`"
)
- st.plotly_chart(render_ranking_plot("attitude5"))
+ st.plotly_chart(render_ranking_plot("attitude5"), use_container_width=True)
st.write(
"### Which of the following actors do you trust the most to **enforce compliance** regarding surveillance by intelligence agencies? `[attitude6]`"
)
- st.plotly_chart(render_ranking_plot("attitude6"))
+ st.plotly_chart(render_ranking_plot("attitude6"), use_container_width=True)
if section == "Appendix":