diff --git a/explorer/civsoc.py b/explorer/civsoc.py index b1d364f..769445e 100644 --- a/explorer/civsoc.py +++ b/explorer/civsoc.py @@ -1102,7 +1102,7 @@ def get_cs_df(): "AO03": "Independent expert bodies", "AO04": "Data protection authorities", "AO05": "Audit courts", - "AO06": "Civil society organisations", + "AO06": "The media", } ) # Here, FR is coded differently @@ -1113,7 +1113,7 @@ def get_cs_df(): "AO03": "Independent expert bodies", "AO04": "Data protection authorities", "AO07": "Audit courts", - "AO06": "Civil society organisations", + "AO06": "Media organisations", } ) @@ -1229,6 +1229,13 @@ def get_cs_df(): merged_markdown = read_markdown_file("explorer/markdown/media.md") st.markdown(merged_markdown, unsafe_allow_html=True) + col1, col2 = st.columns(2) + col1.metric("Civil Society Representatives", len(df[filter].index)) + col2.metric( + "Cumulative years spent working on SBIA", + int(df[filter]["CSexpertise1"].sum()), + ) + st.write("### Country `[country]`") country_counts = df[filter]["country"].value_counts() st.plotly_chart( @@ -3247,7 +3254,7 @@ def get_cs_df(): "Independent expert bodies", "Data protection authorities", "Audit courts", - "CSOs | The media", + "The media", ] st.write( diff --git a/explorer/media.py b/explorer/media.py index ce54e1f..e981174 100644 --- a/explorer/media.py +++ b/explorer/media.py @@ -1038,6 +1038,13 @@ def get_ms_df(): merged_markdown = read_markdown_file("explorer/markdown/media.md") st.markdown(merged_markdown, unsafe_allow_html=True) + col1, col2 = st.columns(2) + col1.metric("Media representatives", len(df[filter].index)) + col2.metric( + "Cumulative years spent working on SBIA", + int(df[filter]["MSexpertise1"].sum()), + ) + st.write("### Country `[country]`") country_counts = df[filter]["country"].value_counts() st.plotly_chart( @@ -1045,7 +1052,8 @@ def get_ms_df(): df[filter], values=country_counts, names=country_counts.index, - ) + ), + use_container_width=True, ) if section == "Resources": @@ -1068,7 +1076,8 @@ def get_ms_df(): "Freelance": px.colors.qualitative.Prism[4], "Other": px.colors.qualitative.Prism[10], }, - ) + ), + use_container_width=True, ) st.write( @@ -1087,7 +1096,8 @@ def get_ms_df(): "United Kingdom": px.colors.qualitative.Prism[7], }, labels={"MShr2": "days per month"}, - ) + ), + use_container_width=True, ) st.plotly_chart( @@ -1102,7 +1112,8 @@ def get_ms_df(): "France": px.colors.qualitative.Prism[1], "United Kingdom": px.colors.qualitative.Prism[7], }, - ) + ), + use_container_width=True, ) st.write("### Which type of medium do you work for? `[MShr3]`") @@ -1139,7 +1150,8 @@ def get_ms_df(): "United Kingdom": px.colors.qualitative.Prism[7], }, labels={"count": "people who work for this medium"}, - ) + ), + use_container_width=True, ) st.write( @@ -1160,7 +1172,8 @@ def get_ms_df(): "I don't know": px.colors.qualitative.Prism[10], "I prefer not to say": px.colors.qualitative.Prism[10], }, - ) + ), + use_container_width=True, ) st.write("## Expertise") @@ -1181,7 +1194,8 @@ def get_ms_df(): "United Kingdom": px.colors.qualitative.Prism[7], }, labels={"MSexpertise1": "years"}, - ) + ), + use_container_width=True, ) st.plotly_chart( @@ -1196,7 +1210,8 @@ def get_ms_df(): "France": px.colors.qualitative.Prism[1], "United Kingdom": px.colors.qualitative.Prism[7], }, - ) + ), + use_container_width=True, ) st.write( @@ -1219,7 +1234,8 @@ def get_ms_df(): "I don't know": px.colors.qualitative.Prism[10], "I prefer not to say": px.colors.qualitative.Prism[10], }, - ) + ), + use_container_width=True, ) st.write( @@ -1242,7 +1258,8 @@ def get_ms_df(): "I don't know": px.colors.qualitative.Prism[10], "I prefer not to say": px.colors.qualitative.Prism[10], }, - ) + ), + use_container_width=True, ) st.write( @@ -1265,7 +1282,8 @@ def get_ms_df(): "I don't know": px.colors.qualitative.Prism[10], "I prefer not to say": px.colors.qualitative.Prism[10], }, - ) + ), + use_container_width=True, ) st.write("## Financial Resources") @@ -1290,7 +1308,8 @@ def get_ms_df(): "I don't know": px.colors.qualitative.Prism[10], "I prefer not to say": px.colors.qualitative.Prism[10], }, - ) + ), + use_container_width=True, ) st.write( @@ -1309,7 +1328,8 @@ def get_ms_df(): "I don't know": px.colors.qualitative.Prism[10], "I prefer not to say": px.colors.qualitative.Prism[10], }, - ) + ), + use_container_width=True, ) st.write("## Freedom of Information") @@ -1330,7 +1350,8 @@ def get_ms_df(): "I don't know": px.colors.qualitative.Prism[10], "I prefer not to say": px.colors.qualitative.Prism[10], }, - ) + ), + use_container_width=True, ) st.write("### How often did you request information? `[MSfoi2]`") @@ -1347,7 +1368,8 @@ def get_ms_df(): "United Kingdom": px.colors.qualitative.Prism[7], }, labels={"MSfoi2": "Number of requests"}, - ) + ), + use_container_width=True, ) st.plotly_chart( @@ -1362,7 +1384,8 @@ def get_ms_df(): "France": px.colors.qualitative.Prism[1], "United Kingdom": px.colors.qualitative.Prism[7], }, - ) + ), + use_container_width=True, ) st.write( @@ -1382,7 +1405,8 @@ def get_ms_df(): "I don't know": px.colors.qualitative.Prism[10], "I prefer not to say": px.colors.qualitative.Prism[10], }, - ) + ), + use_container_width=True, ) st.write( @@ -1395,7 +1419,8 @@ def get_ms_df(): df[filter], values=protectops2_counts, names=protectops2_counts.index, - ) + ), + use_container_width=True, ) st.write( @@ -1435,7 +1460,8 @@ def get_ms_df(): "United Kingdom": px.colors.qualitative.Prism[7], }, labels={"count": "people who answered 'Yes'"}, - ) + ), + use_container_width=True, ) st.write("## Appreciation") @@ -1456,7 +1482,8 @@ def get_ms_df(): "I don't know": px.colors.qualitative.Prism[10], "I prefer not to say": px.colors.qualitative.Prism[10], }, - ) + ), + use_container_width=True, ) st.write( @@ -1475,7 +1502,8 @@ def get_ms_df(): "I don't know": px.colors.qualitative.Prism[10], "I prefer not to say": px.colors.qualitative.Prism[10], }, - ) + ), + use_container_width=True, ) if section == "Media Reporting": @@ -1499,7 +1527,8 @@ def get_ms_df(): "United Kingdom": px.colors.qualitative.Prism[7], }, labels={"MSsoc1": "pieces produced lasy year"}, - ) + ), + use_container_width=True, ) st.plotly_chart( @@ -1514,7 +1543,8 @@ def get_ms_df(): "France": px.colors.qualitative.Prism[1], "United Kingdom": px.colors.qualitative.Prism[7], }, - ) + ), + use_container_width=True, ) st.write( @@ -1535,7 +1565,8 @@ def get_ms_df(): labels={ "MSsoc2": "pieces focused on surveillance by intelligence agencies" }, - ) + ), + use_container_width=True, ) st.plotly_chart( @@ -1550,7 +1581,8 @@ def get_ms_df(): "France": px.colors.qualitative.Prism[1], "United Kingdom": px.colors.qualitative.Prism[7], }, - ) + ), + use_container_width=True, ) MSsoc1_list = df[filter]["MSsoc1"].to_list() @@ -1565,7 +1597,8 @@ def get_ms_df(): "pieces focused
on surveillance
by intelligence", ], colors=[px.colors.qualitative.Prism[0], px.colors.qualitative.Prism[2]], - ) + ), + use_container_width=True, ) df_comp = df[filter][["MSsoc1", "country"]].dropna() @@ -1590,7 +1623,8 @@ def get_ms_df(): "France": px.colors.qualitative.Prism[1], "United Kingdom": px.colors.qualitative.Prism[7], }, - ) + ), + use_container_width=True, ) st.write( @@ -1612,7 +1646,8 @@ def get_ms_df(): "I don't know": px.colors.qualitative.Prism[10], "I prefer not to say": px.colors.qualitative.Prism[10], }, - ) + ), + use_container_width=True, ) st.write( @@ -1649,7 +1684,8 @@ def get_ms_df(): "United Kingdom": px.colors.qualitative.Prism[7], }, labels={"count": "people who answered 'Yes'"}, - ) + ), + use_container_width=True, ) st.write("### If you selected ‘other’, please specify `[MSsoc5other]`") @@ -1690,7 +1726,8 @@ def get_ms_df(): "United Kingdom": px.colors.qualitative.Prism[7], }, labels={"count": "people who answered 'Yes'"}, - ) + ), + use_container_width=True, ) st.write("### If you selected ‘other’, please specify `[MSsoc6other]`") @@ -1719,7 +1756,8 @@ def get_ms_df(): "I don't know": px.colors.qualitative.Prism[10], "I prefer not to say": px.colors.qualitative.Prism[10], }, - ) + ), + use_container_width=True, ) st.write( @@ -1741,7 +1779,8 @@ def get_ms_df(): "I don't know": px.colors.qualitative.Prism[10], "I prefer not to say": px.colors.qualitative.Prism[10], }, - ) + ), + use_container_width=True, ) st.write( @@ -1760,7 +1799,8 @@ def get_ms_df(): "I don't know": px.colors.qualitative.Prism[10], "I prefer not to say": px.colors.qualitative.Prism[10], }, - ) + ), + use_container_width=True, ) st.write("## Perceived Impact") @@ -1800,7 +1840,8 @@ def get_ms_df(): "United Kingdom": px.colors.qualitative.Prism[7], }, labels={"count": "people who answered 'Yes'"}, - ) + ), + use_container_width=True, ) st.write( @@ -1839,7 +1880,8 @@ def get_ms_df(): "United Kingdom": px.colors.qualitative.Prism[7], }, labels={"count": "people who answered 'Yes'"}, - ) + ), + use_container_width=True, ) st.write("### If you selected ‘other’, please specify `[MSimpact2other]`") @@ -1928,7 +1970,8 @@ def get_ms_df(): values=MSprotectops2_counts, names=MSprotectops2_counts.index, color_discrete_sequence=px.colors.qualitative.Prism, - ) + ), + use_container_width=True, ) st.write( @@ -2053,7 +2096,8 @@ def get_ms_df(): "I don't know": px.colors.qualitative.Prism[10], "I prefer not to say": px.colors.qualitative.Prism[10], }, - ) + ), + use_container_width=True, ) st.write("## Legal Protection") @@ -2079,7 +2123,8 @@ def get_ms_df(): "I don't know": px.colors.qualitative.Prism[10], "I prefer not to say": px.colors.qualitative.Prism[10], }, - ) + ), + use_container_width=True, ) st.write( @@ -2100,7 +2145,8 @@ def get_ms_df(): "I don't know": px.colors.qualitative.Prism[10], "I prefer not to say": px.colors.qualitative.Prism[10], }, - ) + ), + use_container_width=True, ) st.write( @@ -2246,7 +2292,8 @@ def get_ms_df(): "I don't know": px.colors.qualitative.Prism[10], "I prefer not to say": px.colors.qualitative.Prism[10], }, - ) + ), + use_container_width=True, ) st.write("## Rights to Access") @@ -2267,7 +2314,8 @@ def get_ms_df(): "I don't know": px.colors.qualitative.Prism[10], "I prefer not to say": px.colors.qualitative.Prism[10], }, - ) + ), + use_container_width=True, ) st.write("### Have you ever made use of this right? `[MSprotectrta2]`") @@ -2284,7 +2332,8 @@ def get_ms_df(): "I don't know": px.colors.qualitative.Prism[10], "I prefer not to say": px.colors.qualitative.Prism[10], }, - ) + ), + use_container_width=True, ) st.write( @@ -2303,7 +2352,8 @@ def get_ms_df(): "I don't know": px.colors.qualitative.Prism[10], "I prefer not to say": px.colors.qualitative.Prism[10], }, - ) + ), + use_container_width=True, ) st.write( @@ -2322,7 +2372,8 @@ def get_ms_df(): "I don't know": px.colors.qualitative.Prism[10], "I prefer not to say": px.colors.qualitative.Prism[10], }, - ) + ), + use_container_width=True, ) st.write( @@ -2342,7 +2393,8 @@ def get_ms_df(): "I don't know": px.colors.qualitative.Prism[10], "I prefer not to say": px.colors.qualitative.Prism[10], }, - ) + ), + use_container_width=True, ) st.write( @@ -2368,7 +2420,8 @@ def get_ms_df(): "I don't know": px.colors.qualitative.Prism[10], "I prefer not to say": px.colors.qualitative.Prism[10], }, - ) + ), + use_container_width=True, ) if section == "Constraints": @@ -2392,7 +2445,8 @@ def get_ms_df(): "I don't know": px.colors.qualitative.Prism[10], "I prefer not to say": px.colors.qualitative.Prism[10], }, - ) + ), + use_container_width=True, ) st.write( @@ -2411,7 +2465,8 @@ def get_ms_df(): "I don't know": px.colors.qualitative.Prism[10], "I prefer not to say": px.colors.qualitative.Prism[10], }, - ) + ), + use_container_width=True, ) st.write( @@ -2430,7 +2485,8 @@ def get_ms_df(): "United Kingdom": px.colors.qualitative.Prism[7], }, labels={"MSconstraintcen3": "times"}, - ) + ), + use_container_width=True, ) st.write( @@ -2449,7 +2505,8 @@ def get_ms_df(): "I don't know": px.colors.qualitative.Prism[10], "I prefer not to say": px.colors.qualitative.Prism[10], }, - ) + ), + use_container_width=True, ) st.write("### If you selected ‘yes’, please specify `[MSconstraintcen4spec]`") @@ -2473,7 +2530,8 @@ def get_ms_df(): "I don't know": px.colors.qualitative.Prism[10], "I prefer not to say": px.colors.qualitative.Prism[10], }, - ) + ), + use_container_width=True, ) st.write("### If you selected ‘yes’, please specify `[MSconstraintcen5spec]`") @@ -2501,7 +2559,8 @@ def get_ms_df(): "I don't know": px.colors.qualitative.Prism[10], "I prefer not to say": px.colors.qualitative.Prism[10], }, - ) + ), + use_container_width=True, ) st.write( @@ -2527,7 +2586,8 @@ def get_ms_df(): values=MSconstraintinter3_counts, names=MSconstraintinter3_counts.index, color_discrete_sequence=px.colors.qualitative.Prism, - ) + ), + use_container_width=True, ) st.write( @@ -2827,7 +2887,8 @@ def get_ms_df(): values=MSattitude1_counts, names=MSattitude1_counts.index, color_discrete_sequence=px.colors.qualitative.Prism, - ) + ), + use_container_width=True, ) # Pie chart MSattitudes (MSattitude2) @@ -2842,7 +2903,8 @@ def get_ms_df(): values=MSattitude2_counts, names=MSattitude2_counts.index, color_discrete_sequence=px.colors.qualitative.Prism, - ) + ), + use_container_width=True, ) # Histogram (MSattitude3) @@ -2871,7 +2933,7 @@ def get_ms_df(): ) MSattitude3_df = MSattitude3_df.drop_duplicates() st.plotly_chart( - generate_histogram( + render_histogram( df=MSattitude3_df, x="option", y="count", @@ -2883,7 +2945,8 @@ def get_ms_df(): "United Kingdom": px.colors.qualitative.Prism[7], }, labels={"count": "people who answered 'Yes'"}, - ) + ), + use_container_width=True, ) scoring = {1: 6, 2: 5, 3: 4, 4: 3, 5: 2, 6: 1} @@ -2899,17 +2962,17 @@ def get_ms_df(): st.write( "### Which of the following actors do you trust the most to **enable public debate** on surveillance by intelligence agencies? `[MSattitude4]`" ) - st.plotly_chart(render_ranking_plot("MSattitude4")) + st.plotly_chart(render_ranking_plot("MSattitude4"), use_container_width=True) st.write( "### Which of the following actors do you trust the most to **contest surveillance** by intelligence agencies? `[MSattitude5]`" ) - st.plotly_chart(render_ranking_plot("MSattitude5")) + st.plotly_chart(render_ranking_plot("MSattitude5"), use_container_width=True) st.write( "### Which of the following actors do you trust the most to **enforce compliance** regarding surveillance by intelligence agencies? `[MSattitude6]`" ) - st.plotly_chart(render_ranking_plot("MSattitude6")) + st.plotly_chart(render_ranking_plot("MSattitude6"), use_container_width=True) if section == "Appendix": diff --git a/explorer/merged.py b/explorer/merged.py index cf6d263..9b3aaeb 100644 --- a/explorer/merged.py +++ b/explorer/merged.py @@ -958,6 +958,23 @@ def get_merged_ms_df(): merged_markdown = read_markdown_file("explorer/markdown/merged.md") st.markdown(merged_markdown, unsafe_allow_html=True) + col1, col2 = st.columns(2) + col1.metric("Respondents", len(df[filter].index)) + col2.metric( + "Cumulative years spent working on SBIA", + int(df[filter]["expertise1"].sum()), + ) + + col1, col2 = st.columns(2) + col1.metric( + "Media representatives", + len(df[filter & (df.surveytype == "Media Scrutiny")].index), + ) + col2.metric( + "Civil Society representatives", + len(df[filter & (df.surveytype == "Civil Society Scrutiny")].index), + ) + st.write("### Country `[country]`") country_counts = df[filter]["country"].value_counts() st.plotly_chart( @@ -965,7 +982,8 @@ def get_merged_ms_df(): df[filter], values=country_counts, names=country_counts.index, - ) + ), + use_container_width=True, ) st.write("### Surveytype `[surveytype]`") @@ -975,7 +993,8 @@ def get_merged_ms_df(): df[filter], values=surveytype_counts, names=surveytype_counts.index, - ) + ), + use_container_width=True, ) if section == "Resources": @@ -998,7 +1017,8 @@ def get_merged_ms_df(): "Freelance": px.colors.qualitative.Prism[4], "Other": px.colors.qualitative.Prism[10], }, - ) + ), + use_container_width=True, ) st.write( @@ -1017,7 +1037,8 @@ def get_merged_ms_df(): "United Kingdom": px.colors.qualitative.Prism[7], }, labels={"hr2": "days per month"}, - ) + ), + use_container_width=True, ) st.plotly_chart( @@ -1032,7 +1053,8 @@ def get_merged_ms_df(): "France": px.colors.qualitative.Prism[1], "United Kingdom": px.colors.qualitative.Prism[7], }, - ) + ), + use_container_width=True, ) df["hr2_more_than_five"] = np.where(df["hr2"] > 5, True, False) @@ -1046,7 +1068,8 @@ def get_merged_ms_df(): values=hr2_more_than_five_counts, names=hr2_more_than_five_counts.index, color=hr2_more_than_five_counts.index, - ) + ), + use_container_width=True, ) st.write("## Expertise") @@ -1067,7 +1090,8 @@ def get_merged_ms_df(): "United Kingdom": px.colors.qualitative.Prism[7], }, labels={"expertise1": "years"}, - ) + ), + use_container_width=True, ) st.plotly_chart( @@ -1082,7 +1106,8 @@ def get_merged_ms_df(): "France": px.colors.qualitative.Prism[1], "United Kingdom": px.colors.qualitative.Prism[7], }, - ) + ), + use_container_width=True, ) st.write( @@ -1105,7 +1130,8 @@ def get_merged_ms_df(): "I don't know": px.colors.qualitative.Prism[10], "I prefer not to say": px.colors.qualitative.Prism[10], }, - ) + ), + use_container_width=True, ) st.write( @@ -1128,7 +1154,8 @@ def get_merged_ms_df(): "I don't know": px.colors.qualitative.Prism[10], "I prefer not to say": px.colors.qualitative.Prism[10], }, - ) + ), + use_container_width=True, ) st.write( @@ -1151,7 +1178,8 @@ def get_merged_ms_df(): "I don't know": px.colors.qualitative.Prism[10], "I prefer not to say": px.colors.qualitative.Prism[10], }, - ) + ), + use_container_width=True, ) st.write("## Financial Resources") @@ -1197,7 +1225,8 @@ def get_merged_ms_df(): "I don't know": px.colors.qualitative.Prism[10], "I prefer not to say": px.colors.qualitative.Prism[10], }, - ) + ), + use_container_width=True, ) st.write("### How often did you request information? `[foi2]`") @@ -1214,7 +1243,8 @@ def get_merged_ms_df(): "United Kingdom": px.colors.qualitative.Prism[7], }, labels={"foi2": "Number of requests"}, - ) + ), + use_container_width=True, ) st.plotly_chart( @@ -1229,7 +1259,8 @@ def get_merged_ms_df(): "France": px.colors.qualitative.Prism[1], "United Kingdom": px.colors.qualitative.Prism[7], }, - ) + ), + use_container_width=True, ) st.write( @@ -1249,7 +1280,8 @@ def get_merged_ms_df(): "I don't know": px.colors.qualitative.Prism[10], "I prefer not to say": px.colors.qualitative.Prism[10], }, - ) + ), + use_container_width=True, ) st.write( @@ -1262,7 +1294,8 @@ def get_merged_ms_df(): df[filter], values=foi4_counts, names=foi4_counts.index, - ) + ), + use_container_width=True, ) st.write( @@ -1301,7 +1334,8 @@ def get_merged_ms_df(): "United Kingdom": px.colors.qualitative.Prism[7], }, labels={"count": "people who answered 'Yes'"}, - ) + ), + use_container_width=True, ) st.write("### If you selected ‘other’, please specify `[foi5other]`") @@ -1389,7 +1423,8 @@ def get_merged_ms_df(): values=protectops2_counts, names=protectops2_counts.index, color_discrete_sequence=px.colors.qualitative.Prism, - ) + ), + use_container_width=True, ) st.write( @@ -1514,7 +1549,8 @@ def get_merged_ms_df(): "I don't know": px.colors.qualitative.Prism[10], "I prefer not to say": px.colors.qualitative.Prism[10], }, - ) + ), + use_container_width=True, ) st.write("## Legal Protection") @@ -1540,7 +1576,8 @@ def get_merged_ms_df(): "I don't know": px.colors.qualitative.Prism[10], "I prefer not to say": px.colors.qualitative.Prism[10], }, - ) + ), + use_container_width=True, ) st.write( @@ -1561,7 +1598,8 @@ def get_merged_ms_df(): "I don't know": px.colors.qualitative.Prism[10], "I prefer not to say": px.colors.qualitative.Prism[10], }, - ) + ), + use_container_width=True, ) st.write("### If you selected ‘no’, please specify `[protectleg2no]`") @@ -1654,7 +1692,8 @@ def get_merged_ms_df(): "I don't know": px.colors.qualitative.Prism[10], "I prefer not to say": px.colors.qualitative.Prism[10], }, - ) + ), + use_container_width=True, ) st.write( @@ -1680,7 +1719,8 @@ def get_merged_ms_df(): values=constraintinter3_counts, names=constraintinter3_counts.index, color_discrete_sequence=px.colors.qualitative.Prism, - ) + ), + use_container_width=True, ) st.write( @@ -1896,7 +1936,8 @@ def get_merged_ms_df(): values=attitude1_counts, names=attitude1_counts.index, color_discrete_sequence=px.colors.qualitative.Prism, - ) + ), + use_container_width=True, ) st.write( @@ -1910,7 +1951,8 @@ def get_merged_ms_df(): values=attitude2_counts, names=attitude2_counts.index, color_discrete_sequence=px.colors.qualitative.Prism, - ) + ), + use_container_width=True, ) st.write( @@ -1939,7 +1981,7 @@ def get_merged_ms_df(): attitude3_df = attitude3_df.drop_duplicates() st.plotly_chart( - generate_histogram( + render_histogram( df=attitude3_df, x="option", y="count", @@ -1951,7 +1993,8 @@ def get_merged_ms_df(): "United Kingdom": px.colors.qualitative.Prism[7], }, labels={"count": "people who answered 'Yes'"}, - ) + ), + use_container_width=True, ) scoring = {1: 6, 2: 5, 3: 4, 4: 3, 5: 2, 6: 1} @@ -1967,17 +2010,17 @@ def get_merged_ms_df(): st.write( "### Which of the following actors do you trust the most to **enable public debate** on surveillance by intelligence agencies? `[attitude4]`" ) - st.plotly_chart(render_ranking_plot("attitude4")) + st.plotly_chart(render_ranking_plot("attitude4"), use_container_width=True) st.write( "### Which of the following actors do you trust the most to **contest surveillance** by intelligence agencies? `[attitude5]`" ) - st.plotly_chart(render_ranking_plot("attitude5")) + st.plotly_chart(render_ranking_plot("attitude5"), use_container_width=True) st.write( "### Which of the following actors do you trust the most to **enforce compliance** regarding surveillance by intelligence agencies? `[attitude6]`" ) - st.plotly_chart(render_ranking_plot("attitude6")) + st.plotly_chart(render_ranking_plot("attitude6"), use_container_width=True) if section == "Appendix":