-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexport_onnx_torchvision.py
34 lines (27 loc) · 1.08 KB
/
export_onnx_torchvision.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
#!/usr/bin/env python3
# lix19937
import argparse
import torch
import torchvision
parser = argparse.ArgumentParser()
parser.add_argument("--opset", type=int, default=11, help="ONNX opset version to generate models with.")
args = parser.parse_args()
# from torchvision
dummy_input = torch.randn(10, 3, 224, 224, device='cuda')
model = torchvision.models.alexnet(pretrained=True).cuda()
input_names = [ "actual_input_1" ] #+ [ "learned_%d" % i for i in range(16) ]
output_names = [ "output1" ]
# Fixed Shape
torch.onnx.export(model, dummy_input, "alexnet_fixed.onnx", verbose=True, opset_version=args.opset,
input_names=input_names, output_names=output_names)
# Dynamic Shape
dynamic_axes = {"actual_input_1":{0:"batch_size"}, "output1":{0:"batch_size"}}
print(dynamic_axes)
torch.onnx.export(model,
dummy_input,
"alexnet_dynamic.onnx",
verbose=True,
opset_version=args.opset,
input_names=input_names,
output_names=output_names,
dynamic_axes=dynamic_axes)