-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclientClasses.py
182 lines (134 loc) · 6.22 KB
/
clientClasses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import tweepy
from tweepy import API
from tweepy import Cursor
from tweepy.streaming import StreamListener
from tweepy import OAuthHandler
from tweepy import Stream
import datetime as dt
from textblob import TextBlob
import numpy as np
import pandas as pd
import re
import matplotlib.pyplot as plt
consumer_key = "AUds4eS1BHAq2UcjeaBbmQi0K"
consumer_secret = "iVWKUBzAclrz1ow3XBP5ReMwAX6WUBO9NaXlCYEeiHGj5UVN7a"
access_token = "1319171958286749697-n8l6vveS4glZHOQUHxnH6ozI6ek2eI"
access_token_secret = "X9WKg1NTCmc96R9KscIpJrtQyLcHRMLF1YGuwAgT0MPy2"
class TwitterClient():
def __init__(self, twitter_user=None):
self.auth = TwitterAuthenticator().authenticate_twitter_app()
self.twitter_client = API(self.auth)
self.twitter_user = twitter_user
def get_twitter_client_api(self):
return self.twitter_client
def get_tweets(self, num_tweets):
tweets = []
for tweet in Cursor(self.twitter_client.user_timeline, id=self.twitter_user).items(num_tweets):
tweets.append(tweet)
return tweets
def get_friend_list(self, num_friends):
friend_list = []
for friend in Cursor(self.twitter_client.friends, id=self.twitter_user).items(num_friends):
friend_list.append(friend)
return friend_list
def get_home_timeline_tweets(self, num_tweets):
home_timeline_tweets = []
for tweet in Cursor(self.twitter_client.home_timeline, id=self.twitter_user).items(num_tweets):
home_timeline_tweets.append(tweet)
return home_timeline_tweets
def keywords_search(self, keywords, num_tweets, startDate, endDate):
tweets = []
data = Cursor(self.twitter_client.search, q=keywords, until=endDate, lang="en").items(num_tweets)
while True:
try:
tweet = data.next()
if tweet.retweet_count > 0:
if tweet not in tweets:
tweets.append(tweet)
else:
tweets.append(tweet)
except tweepy.TweepError: #exception for twitter rate limits
print("Twitter's free API limit rate has been reached. More data can be requested in fifteen minutes. Here is what we were able to pull: ")
break
except Exception as e:
break
return tweets
class TwitterAuthenticator():
def authenticate_twitter_app(self):
auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_token_secret)
return auth
class TwitterStreamer():
def __init__(self):
self.twitter_authenticator = TwitterAuthenticator()
def stream_tweets(self, fetched_tweet_filename, hash_tag_list):
# handles twitter authentification and connection to twitter streaming api
listener = TwitterListener(fetched_tweet_filename)
auth = self.twitter_authenticator.authenticate_twitter_app()
stream = Stream(auth, listener)
stream.filter(track=hash_tag_list)
class TwitterListener(StreamListener):
def __init__(self, fetched_tweet_filename):
self.fetched_tweet_filename = fetched_tweet_filename
def on_data(self, data):
try:
print(data)
with open(self.fetched_tweet_filename, 'a') as tf:
tf.write(data)
return True
except BaseException as e:
print("Error on_data: %s" % str(e))
return True
def on_error(self, status):
if status == 429:
# check for twitter rates limit to prevent banning
return False
print(status)
class TweetAnalyzer():
def clean_tweet(self, tweet):
return ' '.join(re.sub("(@[A-Za-z0-9]+)|([^0-9A-Za-z \t])|(\w+:\/\/\S+)", " ", tweet).split())
def analyze_sentiment(self, tweet):
analysis = TextBlob(self.clean_tweet(tweet))
if analysis.sentiment.polarity > 0:
return 1
elif analysis.sentiment.polarity == 0:
return 0
else:
return -1
def tweet_pop(self, likes, retweets):
return 6 + 3*retweets + likes
def actual_score(self, sentiment, likes, retweets):
return sentiment * (6 + 3*retweets + likes)
def tweets_to_dataframe(self, tweets):
df = pd.DataFrame(data=[tweet.text for tweet in tweets], columns=['tweets'])
df['likes'] = np.array([tweet.favorite_count for tweet in tweets])
df['retweets'] = np.array([tweet.retweet_count for tweet in tweets])
# df['replies'] = np.array([tweet.reply_count for tweet in tweets])
# reply_count is only part of the premium api
df['where'] = np.array([tweet.coordinates for tweet in tweets])
df['when'] = np.array([str(tweet.created_at) for tweet in tweets])
return df
def date_grouper(self, df):
days = [date.split(" ")[0] for date in df['when'].values]
df['day'] = days
tweetsGrouped = df[['day', 'pop', 'score']].groupby('day')['pop'].agg(np.sum)
tweetsGrouped1 = df[['day', 'pop', 'score']].groupby('day')['score'].agg(np.sum)
df2 = pd.DataFrame({'Relevance' : tweetsGrouped, 'Popularity' : tweetsGrouped1}).reset_index()
return df2
if __name__ == "__main__":
hash_tag_list = ["andy dalton"]
twitter_client = TwitterClient()
tweet_analyzer = TweetAnalyzer()
api = twitter_client.get_twitter_client_api()
tweets = twitter_client.keywords_search(hash_tag_list, 10000, dt.date.today()-dt.timedelta(days=30), dt.date.today())
df = tweet_analyzer.tweets_to_dataframe(tweets)
df['sentiment'] = np.array([tweet_analyzer.analyze_sentiment(tweet) for tweet in df['tweets']])
df['pop'] = tweet_analyzer.tweet_pop(df['likes'], df['retweets'])
df['score'] = tweet_analyzer.actual_score(df['sentiment'], df['likes'], df['retweets'])
out = tweet_analyzer.date_grouper(df)
print(out)
# Time Series
# time_likes = pd.Series(data=out['Relevance'])
# time_likes.plot(figsize=(16, 4), color='r')
# plt.show()
out.plot(x='day', y=['Relevance', 'Popularity'], grid=True)