This repository has been archived by the owner on Jan 22, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathsort.cpp
194 lines (161 loc) · 7.52 KB
/
sort.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
/*******************************************************************************
* sort.cpp
*
* Test runner
*
*******************************************************************************
* Copyright (C) 2016 Lorenz Hübschle-Schneider <[email protected]>
*
* The MIT License (MIT)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
******************************************************************************/
#include <algorithm>
#include <cassert>
#include <cstdlib>
#include <fstream>
#include <iostream>
#include <random>
#include "benchmark.h"
// Change this to some other integral type to test other data types
using data_t = int;
int main(int argc, char *argv[]) {
if (argc > 1 && std::string{argv[1]} == "-h") {
std::cout << "Usage: " << argv[0]
<< " [outer iteratons] [inner iterations]"
<< " [statistics output file]" << std::endl
<< "Defaults are 5 outer iteration, 3 inner iterations,"
<< " and output to stats.txt" << std::endl;
return 0;
}
std::cout << "This benchmark suite writes output for SqlPlotTools to allow "
<< "for easy plotting." << std::endl << "Grab a copy at "
<< "https://github.com/bingmann/sqlplot-tools, point it to "
<< "speed.plot and run gnuplot on it!" << std::endl;
// Parse flags
size_t outer_its = 5, inner_its = 3;
if (argc > 1) outer_its = static_cast<size_t>(atol(argv[1]));
if (argc > 2) inner_its = static_cast<size_t>(atol(argv[2]));
std::string stat_file = "stats.txt";
if (argc > 3) stat_file = std::string{argv[3]};
std::ofstream *stat_stream = nullptr;
if (stat_file != "-") {
stat_stream = new std::ofstream;
stat_stream->open(stat_file);
}
auto random_gen = [](data_t* data, size_t size){
std::mt19937 rng{ std::random_device{}() };
for (size_t i = 0; i < size; ++i) {
data[i] = static_cast<data_t>(rng());
}
};
// Warmup
benchmark_generator<data_t>(random_gen, "warmup", 1, 3, stat_stream, 20);
// Run Benchmarks
benchmark_generator<data_t>(random_gen, "random", outer_its, inner_its,
stat_stream);
// nearly sorted data generator factory
auto nearly_sorted_gen = [](size_t rfrac) {
return [rfrac](data_t* data, size_t size) {
std::mt19937 rng{ std::random_device{}() };
// fill with sorted data, using entire range of RNG
size_t factor = static_cast<size_t>(static_cast<double>(rng.max()) / size);
for (size_t i = 0; i < size; ++i) {
data[i] = static_cast<data_t>(i * factor);
}
// set 1/rfrac of the items to random values
for (size_t i = 0; i < size/rfrac; ++i) {
data[rng() % size] = static_cast<data_t>(rng());
}
};
};
benchmark_generator<data_t>(nearly_sorted_gen(5), "80pcsorted",
outer_its, inner_its, stat_stream);
benchmark_generator<data_t>(nearly_sorted_gen(10), "90pcsorted",
outer_its, inner_its, stat_stream);
benchmark_generator<data_t>(nearly_sorted_gen(100), "99pcsorted",
outer_its, inner_its, stat_stream);
benchmark_generator<data_t>(nearly_sorted_gen(1000), "99.9pcsorted",
outer_its, inner_its, stat_stream);
// nearly sorted data generator factory
auto unsorted_tail_gen = [](size_t rfrac) {
return [rfrac](data_t* data, size_t size) {
std::mt19937 rng{ std::random_device{}() };
// fill with sorted data, using entire range of RNG
size_t ordered_max = size - (size / rfrac);
size_t factor = static_cast<size_t>(static_cast<double>(rng.max()) / ordered_max);
for (size_t i = 0; i < ordered_max; ++i) {
data[i] = static_cast<data_t>(i * factor);
}
// set 1/rfrac of the items to random values
for (size_t i = ordered_max; i < size; ++i) {
data[i] = static_cast<data_t>(rng());
}
};
};
benchmark_generator<data_t>(unsorted_tail_gen(10), "tail90",
outer_its, inner_its, stat_stream);
benchmark_generator<data_t>(unsorted_tail_gen(100), "tail99",
outer_its, inner_its, stat_stream);
benchmark_generator<data_t>([](data_t* data, size_t size){
for (size_t i = 0; i < size; ++i) {
data[i] = static_cast<data_t>(i);
}
}, "sorted", outer_its, inner_its, stat_stream, true);
benchmark_generator<data_t>([](data_t* data, size_t size){
for (size_t i = 0; i < size; ++i) {
data[i] = static_cast<data_t>(size - i);
}
}, "reverse", outer_its, inner_its, stat_stream, true);
// Benchmark due to Armin Weiß at Universität Stuttgart
benchmark_generator<data_t>([](data_t* data, size_t size) {
size_t flogn = 0, s = size;
while (s >>= 1) ++flogn; // floor(log2(n))
for (size_t i = 0; i < size; ++i) {
size_t j = i;
j *= j; j *= j; j *= j; j *= j;
data[i] = static_cast<data_t>(j % flogn);
}
}, "many-dupes", outer_its, inner_its, stat_stream, true);
/* Benchmark due to Armin Weiß at Universität Stuttgart
*
* This is an interesting case because the distribution has few very large
* spikes and lots of elements around them. Thus the buckets aren't
* all-equal, and without a break on big buckets, it would recurse a lot.
*/
benchmark_generator<data_t>([](data_t* data, size_t size){
uint64_t prev_pow_2 = 1;
while (2 * prev_pow_2 <= size) { prev_pow_2 *= 2; }
const size_t offset_zw = prev_pow_2 / 2;
for (size_t i = 0; i < size; i++) {
uint64_t temp = (i*i) % prev_pow_2;
temp = (temp*temp) % prev_pow_2;
data[i] = static_cast<data_t>(
(offset_zw + temp*temp) % prev_pow_2);
}
}, "few-spikes-with-noise", outer_its, inner_its, stat_stream, true);
benchmark_generator<data_t>([](data_t* data, size_t size){
for (size_t i = 0; i < size; ++i) {
data[i] = 1;
}
}, "ones", outer_its, inner_its, stat_stream, true);
if (stat_stream != nullptr) {
stat_stream->close();
delete stat_stream;
}
}