-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
53 lines (41 loc) · 1.68 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import numpy as np
import matplotlib.pyplot as plt
from keras.preprocessing.image import ImageDataGenerator, load_img, img_to_array, array_to_img
from keras.layers import Conv2D, Flatten, MaxPooling2D, Dense
from keras.models import Sequential
import glob, os, random
base_path = './dataset-resized'
img_list = glob.glob(os.path.join(base_path, '*/*.jpg'))
print(len(img_list))
for i, img_path in enumerate(random.sample(img_list, 6)):
img = load_img(img_path)
img = img_to_array(img, dtype=np.uint8)
plt.subplot(2, 3, i + 1)
plt.imshow(img.squeeze())
train_datagen = ImageDataGenerator(
rescale=1. / 225, shear_range=0.1, zoom_range=0.1,
width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=True,
vertical_flip=True, validation_split=0.1)
test_datagen = ImageDataGenerator(
rescale=1. / 255, validation_split=0.1)
train_generator = train_datagen.flow_from_directory(
base_path, target_size=(224, 224), batch_size=16,
class_mode='categorical', subset='training', seed=0)
validation_generator = test_datagen.flow_from_directory(
base_path, target_size=(224, 224), batch_size=16,
class_mode='categorical', subset='validation', seed=0)
labels = (train_generator.class_indices)
print(labels)
labels = dict((v, k) for k, v in labels.items())
print(labels)
from keras.models import load_model
#del model
model = load_model('results/model.h5')
test_x, test_y = validation_generator.__getitem__(8)
preds = model.predict(test_x)
plt.figure(figsize=(20, 12))
for i in range(15):
plt.subplot(3, 5, i+1)
plt.title('pred:%s / truth:%s' % (labels[np.argmax(preds[i])], labels[np.argmax(test_y[i])]))
plt.imshow(test_x[i])
plt.savefig('./results/result.png')