-
Notifications
You must be signed in to change notification settings - Fork 13
/
sampling_cuda_nonprogressive.h
612 lines (477 loc) · 18 KB
/
sampling_cuda_nonprogressive.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
#pragma once
#include <string>
#include <queue>
#include <vector>
#include <mutex>
#include <thread>
#include <format>
#include "glm/common.hpp"
#include "glm/matrix.hpp"
#include <glm/gtx/transform.hpp>
#include "unsuck.hpp"
#include "Box.h"
#include "Debug.h"
#include "Camera.h"
// #include "LasLoader.h"
#include "Frustum.h"
#include "Renderer.h"
#include "Shader.h"
#include "cudaGL.h"
// #include "simlod/LasLoader/LasLoader.h"
#include "Runtime.h"
#include "builtin_types.h"
#include "CudaModularProgram.h"
#include "common.h"
#include "utils.h"
#include "OctreeWriter.h"
#include <thrust/sort.h>
#include <thrust/functional.h>
namespace simlod_gentree_cuda_nonprogressive{
// #define MAX_BUFFER_SIZE (1024 * 1024 * 1024)
// #define MAX_BUFFER_SIZE 2'147'483'647
// For Saint Roman with 547M points
// #define MAX_BUFFER_SIZE 15'000'000'000
// For Bernhard and the CA21 Bunds datas set with 975M points
#define MAX_BUFFER_SIZE 15'000'000'000
struct VoxelTreeGen{
Renderer* renderer = nullptr;
shared_ptr<simlod::LasFile> lasfile = nullptr;
int numPoints = 0;
CUdeviceptr num_nodes, nodes, sorted, alloc_offset;
CUdeviceptr ptr_points, ptr_lines;
CUdeviceptr ptr_buffer, ptr_render_buffer, ptr_input_points;
CUdeviceptr ptr_results;
// CUevent start, end, start_split, end_split, start_voxelize, end_voxelize;
CUgraphicsResource gl_framebuffer;
CudaModularProgram* prog_build_lod = nullptr;
CudaModularProgram* prog_render = nullptr;
GLuint vao = -1;
bool registered = false;
VoxelTreeGen(Renderer* renderer, shared_ptr<simlod::LasFile> lasfile, int numPoints){
this->renderer = renderer;
this->lasfile = lasfile;
this->numPoints = numPoints;
cuMemAlloc(&ptr_buffer, MAX_BUFFER_SIZE);
cuMemAlloc(&ptr_results, sizeof(Results));
cuMemAlloc(&ptr_render_buffer, 100'000'000);
cuMemAlloc(&ptr_input_points, 16 * lasfile->points.size());
cuMemcpyHtoD(ptr_input_points, &lasfile->points[0], 16 * lasfile->points.size());
prog_build_lod = new CudaModularProgram({
.modules = {
"./modules/simlod/sampling_cuda_nonprogressive/lib.cu",
"./modules/simlod/sampling_cuda_nonprogressive/kernel.cu",
},
.kernels = {"kernel2", "kernel3"}
});
prog_render = new CudaModularProgram({
.modules = {
"./modules/simlod/sampling_cuda_nonprogressive/lib.cu",
"./modules/simlod/sampling_cuda_nonprogressive/render.cu",
},
.kernels = {"kernel"},
});
cuMemAlloc(&num_nodes, sizeof(uint32_t));
cuMemAlloc(&nodes, sizeof(void*));
cuMemAlloc(&sorted, sizeof(void*));
cuMemAlloc(&alloc_offset, sizeof(uint64_t));
cuMemAlloc(&ptr_lines, sizeof(void*));
cuMemAlloc(&ptr_points, sizeof(void*));
// cuEventCreate(&start, CU_EVENT_DEFAULT);
// cuEventCreate(&end, CU_EVENT_DEFAULT);
// cuEventCreate(&start_split, CU_EVENT_DEFAULT);
// cuEventCreate(&end_split, CU_EVENT_DEFAULT);
// cuEventCreate(&start_voxelize, CU_EVENT_DEFAULT);
// cuEventCreate(&end_voxelize, CU_EVENT_DEFAULT);
glGenVertexArrays(1, &vao);
voxelize(true);
prog_build_lod->onCompile([&](){
voxelize(true);
});
renderer->onUpdate([&](){
if(Runtime::requestLodGeneration){
cout << "update with strategy " << Runtime::samplingStrategy << " requested" << endl;
Runtime::requestLodGeneration = false;
voxelize(true);
}
});
}
~VoxelTreeGen(){
}
void voxelize(bool wasJustCompiled = false){
if (prog_build_lod == nullptr){
return;
}
auto tStart = now();
CUresult resultcode = CUDA_SUCCESS;
cout << endl;
cout << "==== run cuda ===" << endl;
State state;
{
state.metadata.numPoints = this->numPoints;
state.metadata.min_x = lasfile->header.boxMin.x;
state.metadata.min_y = lasfile->header.boxMin.y;
state.metadata.min_z = lasfile->header.boxMin.z;
state.metadata.max_x = lasfile->header.boxMax.x;
state.metadata.max_y = lasfile->header.boxMax.y;
state.metadata.max_z = lasfile->header.boxMax.z;
auto& viewLeft = renderer->views[0];
mat4 world;
mat4 view = viewLeft.view;
mat4 proj = viewLeft.proj;
mat4 worldView = view * world;
mat4 viewProj = mat4(proj) * view;
mat4 worldViewProj = proj * view * world;
auto fbo = renderer->views[0].framebuffer;
*((glm::mat4*)&state.transform) = glm::transpose(worldViewProj);
state.imageSize = int2{ fbo->width, fbo->height };
state.strategy = static_cast<SamplingStrategy>(Runtime::samplingStrategy);
state.LOD = Runtime::LOD;
}
void* args[] = {
&state, &ptr_buffer, &ptr_results, &ptr_input_points,
&nodes, &num_nodes, &sorted, &alloc_offset,
&ptr_points, &ptr_lines
};
CUevent start, end, start_split, end_split, start_voxelize, end_voxelize;
cuEventCreate(&start, 0);
cuEventCreate(&end, 0);
cuEventCreate(&start_split, 0);
cuEventCreate(&end_split, 0);
cuEventCreate(&start_voxelize, 0);
cuEventCreate(&end_voxelize, 0);
// CUevent start, end;
// cuEventCreate(&start, 0);
// cuEventCreate(&end, 0);
CUdevice device;
int SMs;
cuCtxGetDevice(&device);
cuDeviceGetAttribute(&SMs, CU_DEVICE_ATTRIBUTE_MULTIPROCESSOR_COUNT, device);
auto tLaunchStart = now();
{ // KERNEL 2
int workgroupSize = 256;
int maxActiveBlocksPerSM;
cuOccupancyMaxActiveBlocksPerMultiprocessor(&maxActiveBlocksPerSM, prog_build_lod->kernels["kernel2"], workgroupSize, 0);
int numGroups = maxActiveBlocksPerSM * SMs;
cout << std::format("launching kernel 2, groups: {}, groupSize: {} \n", numGroups, workgroupSize);
cout << std::format("(note: maxGroupsPerSM: {} for workgroupSize {}, SMs: {} \n", maxActiveBlocksPerSM, workgroupSize, SMs);
cuEventRecord(start, 0);
cuEventRecord(start_split, 0);
auto res_launch = cuLaunchCooperativeKernel(prog_build_lod->kernels["kernel2"],
numGroups, 1, 1,
workgroupSize, 1, 1,
0, 0, args);
if(res_launch != CUDA_SUCCESS){
const char* str;
cuGetErrorString(res_launch, &str);
printf("error: %s \n", str);
}
cuEventRecord(end_split, 0);
}
{ // KERNEL 3
int workgroupSize = 256;
int maxActiveBlocksPerSM;
auto curesult = cuOccupancyMaxActiveBlocksPerMultiprocessor(&maxActiveBlocksPerSM,
prog_build_lod->kernels["kernel3"], workgroupSize, 0);
// numGroups *= SMs;
// actually, let's set this to the amount of SMs
// because some kernels allocate global memory for
// sampling grids for each workgroup/block
int numGroups = SMs;
// numGroups = 1;
cout << "curesult: " << curesult << endl;
cout << std::format("launching kernel 3, groups: {}, groupSize: {} \n", numGroups, workgroupSize);
cout << std::format("(note: maxGroupsPerSM: {} for workgroupSize {}, SMs: {} \n", maxActiveBlocksPerSM, workgroupSize, SMs);
// int dynamicSharedMemSize = 60'000;
// int dynamicSharedMemSize = 98304;
// cuFuncSetAttribute (prog_build_lod->kernels["kernel3"],
// CU_FUNC_ATTRIBUTE_MAX_DYNAMIC_SHARED_SIZE_BYTES, dynamicSharedMemSize);
cuEventRecord(start_voxelize, 0);
auto res_launch2 = cuLaunchCooperativeKernel(prog_build_lod->kernels["kernel3"],
numGroups, 1, 1,
workgroupSize, 1, 1,
0, 0, args);
// auto res_launch2 = cuLaunchCooperativeKernel(prog_build_lod->kernels["kernel3"],
// numGroups, 1, 1,
// workgroupSize, 1, 1,
// dynamicSharedMemSize, 0, args);
if (res_launch2 != CUDA_SUCCESS) {
const char* str;
cuGetErrorString(res_launch2, &str);
printf("error: %s \n", str);
}
cuEventRecord(end_voxelize, 0);
}
cuEventRecord(end, 0);
cuEventSynchronize(end);
float total_ms, split_ms, voxelize_ms;
{
cuEventElapsedTime(&total_ms, start, end);
cuEventElapsedTime(&split_ms, start_split, end_split);
cuEventElapsedTime(&voxelize_ms, start_voxelize, end_voxelize);
cout << "CUDA durations: " << endl;
cout << std::format("split: {:6.1f} ms", split_ms) << endl;
cout << std::format("voxelize: {:6.1f} ms", voxelize_ms) << endl;
cout << std::format("total: {:6.1f} ms", total_ms) << endl;
}
cuCtxSynchronize();
auto tEnd = now();
// cout << "cuda duration: " << formatNumber(1000.0 * (tEnd - tStart), 1) << "ms" << endl;
// if(false)
{ // write test results
// struct Point{
// float x;
// float y;
// float z;
// unsigned int color;
// };
// struct Node{
// int pointOffset;
// int numPoints;
// Point* points;
// int numAdded;
// int level;
// int voxelIndex;
// vec3 min;
// vec3 max;
// float cubeSize;
// Node* children[8];
// int numVoxels = 0;
// Point* voxels = nullptr;
// bool visible = true;
// };
// cout << "copy device to host" << endl;
// Buffer buffer(10'000'000'000);
// cuMemcpyDtoH(buffer.data, ptr_buffer, buffer.size);
// uint64_t ptrNodes = 0;
// cuMemcpyDtoH(&ptrNodes, nodes, 8);
// uint32_t numNodes = 0;
// cuMemcpyDtoH(&numNodes, num_nodes, 4);
// cuCtxSynchronize();
// Box box;
// box.min = lasfile->header.boxMin;
// box.max = lasfile->header.boxMax;
// string path = "E:/temp/test";
// OctreeWriter writer(path, box, &buffer, numNodes, ptr_buffer, ptrNodes);
// writer.write();
}
{ // RESULTS
cout << "read results from device to host" << endl;
Results results;
cuMemcpyDtoH(&results, ptr_results, sizeof(Results));
cuCtxSynchronize();
stringstream ss;
ss << "==== RESULTS ====" << endl;
double pointsPerMS = double(results.points) / double(total_ms);
uint64_t mpointsPerS = (pointsPerMS * 1000.0) / 1'000'000.0;
auto locale = std::locale("en_GB.UTF-8");
ss << std::format(locale, "#points: {:15L}", results.points) << endl;
ss << std::format(locale, "#voxels: {:15L}", results.voxels) << endl;
ss << std::format(locale, "#nodes: {:15L}", results.nodes) << endl;
ss << std::format(locale, "million points / sec: {:15L}", mpointsPerS) << endl;
ss << std::format(locale, "#allocated (splitting): {:15L}", results.allocatedMemory_splitting) << endl;
ss << std::format(locale, "#allocated (voxelization): {:15L}", results.allocatedMemory_voxelization) << endl;
ss << std::format(locale, "min-avg-max points/node {:7L} - {:7L} - {:7L}",
results.minPoints, results.avgPoints, results.maxPoints) << endl;
ss << std::format(locale, "min-avg-max voxels/node {:7L} - {:7L} - {:7L}",
results.minVoxels, results.avgVoxels, results.maxVoxels) << endl;
ss << "histogram - points: " << endl;
for(int i = 0; i < 25; i++){
int sum = 0;
sum += results.histogram_points[4 * i + 0];
sum += results.histogram_points[4 * i + 1];
sum += results.histogram_points[4 * i + 2];
sum += results.histogram_points[4 * i + 3];
ss << std::format("{:4},", sum);
}
ss << endl;
ss << "histogram - voxels: " << endl;
for(int i = 0; i < 25; i++){
int sum = 0;
sum += results.histogram_voxels[4 * i + 0];
sum += results.histogram_voxels[4 * i + 1];
sum += results.histogram_voxels[4 * i + 2];
sum += results.histogram_voxels[4 * i + 3];
cout << std::format("{:4},", sum);
}
ss << endl;
ss << "level inner leaves #points #voxels rate" << endl;
for(int i = 0; i < 20; i++){
int numPoints = results.pointsPerLevel[i];
int numVoxels = results.voxelsPerLevel[i];
int samples_0 = numPoints + numVoxels;
int samples_1 = results.pointsPerLevel[i + 1] + results.voxelsPerLevel[i + 1];
int numInnerNodes = results.innerNodesAtLevel[i];
int numLeafNodes = results.leafNodesAtLevel[i];
if(samples_0 > 0){
ss << std::format(locale, "{:2}: {:10L} {:10L} {:15L} {:15L}",
i, numInnerNodes, numLeafNodes, numPoints, numVoxels);
if(samples_1 > 0){
float percentage = float(samples_0) / float(samples_1);
int percentage_i = 100.0f * percentage;
// printf(" %5i %%", percentage_i);
cout << std::format(" {:5} %", percentage_i);
}
ss << endl;
}
}
cout << ss.str() << endl;
stringstream ssHistogram_points;
stringstream ssHistogram_voxels;
for(int i = 0; i < 100; i++){
ssHistogram_points << results.histogram_points[i] << ", ";
ssHistogram_voxels << results.histogram_voxels[i] << ", ";
}
string strLevels = "";
for(int i = 0; i < 20; i++){
int numPoints = results.pointsPerLevel[i];
int numVoxels = results.voxelsPerLevel[i];
int samples_0 = numPoints + numVoxels;
int samples_1 = results.pointsPerLevel[i + 1] + results.voxelsPerLevel[i + 1];
int numInnerNodes = results.innerNodesAtLevel[i];
int numLeafNodes = results.leafNodesAtLevel[i];
if(samples_0 > 0){
strLevels += std::format(" [{:2}, {:5}, {:5}, {:9}, {:9}],\n",
i, numInnerNodes, numLeafNodes, numPoints, numVoxels);
}
}
string strategy;
if(results.strategy == SamplingStrategy::FIRST_COME){
strategy = "FIRST_COME";
}else if(results.strategy == SamplingStrategy::RANDOM){
strategy = "RANDOM";
}else if(results.strategy == SamplingStrategy::AVERAGE_SINGLECELL){
strategy = "AVERAGE_SINGLECELL";
}else if(results.strategy == SamplingStrategy::WEIGHTED_NEIGHBORHOOD){
strategy = "WEIGHTED_NEIGHBORHOOD";
}
auto timestamp = std::chrono::system_clock::now();
auto timestamp_t = std::chrono::system_clock::to_time_t(timestamp);
// string datestring = std::ctime(&end_time);
auto gmt_time = gmtime(×tamp_t);
stringstream sstime;
sstime << std::put_time(gmt_time, "%Y-%m-%d %H:%M:%S");
string datestring = sstime.str();
cudaDeviceProp props;
cudaGetDeviceProperties(&props, 0);
string devicename = props.name;
string formatString = R"V0G0N(
{{
"datetime": "{}",
"device": "{}",
"strategy": "{}",
// duration in milliseconds
"duration_split": {},
"duration_voxelize": {},
"duration_total": {},
"points": {},
"voxels": {},
"nodes": {},
// in million points per second
"throughput": {},
// allocated bytes after splitting and after voxelization
"allocated_splitting": {},
"allocated_voxelization": {},
"minAvgMax_points": {},
"minAvgMax_voxels": {},
// histogram of number of nodes with certain amount of points or voxels
"histogram_maxval": {},
"histogram_points": [{}],
"histogram_voxels": [{}],
// [<level>, <#innerNodes>, <#leafNodes>, <#points>, <#voxels>]
"levels": [
{} ],
}})V0G0N";
string strMinMax_points = std::format("[{:5}, {:5}, {:5}]", results.minPoints, results.avgPoints, results.maxPoints);
string strMinMax_voxels = std::format("[{:5}, {:5}, {:5}]", results.minVoxels, results.avgVoxels, results.maxVoxels);
string formatted = std::format(formatString,
datestring, devicename, strategy,
split_ms, voxelize_ms, total_ms,
results.points, results.voxels, results.nodes, mpointsPerS,
results.allocatedMemory_splitting, results.allocatedMemory_voxelization,
strMinMax_points, strMinMax_voxels,
results.histogram_maxval, ssHistogram_points.str(), ssHistogram_voxels.str(),
strLevels
);
static bool initialized = false;
static stringstream ssResults;
if(!initialized){
ssResults << "{" << endl;
ssResults << " \"benchmarks\": [" << endl;
initialized = true;
}
ssResults << formatted << ", " << endl;
ofstream stream;
stream.open("./results.json", ios::out);
stream << ssResults.str() << endl;
stream << " ]" << endl;
stream << "}" << endl;
}
}
void render(){
auto fbo = renderer->views[0].framebuffer;
glBindFramebuffer(GL_FRAMEBUFFER, fbo->handle);
glBindVertexArray(vao);
auto view = renderer->camera->view;
auto proj = renderer->camera->proj;
mat4 viewProj = proj * view;
// if(false)
if(prog_render){
cuCtxSynchronize();
static bool registered = false;
if(!registered){
cuGraphicsGLRegisterImage(
&gl_framebuffer,
renderer->views[0].framebuffer->colorAttachments[0]->handle,
GL_TEXTURE_2D, CU_GRAPHICS_REGISTER_FLAGS_WRITE_DISCARD
);
registered = true;
}
std::vector<CUgraphicsResource> dynamic_resources = {gl_framebuffer};
cuGraphicsMapResources(dynamic_resources.size(), dynamic_resources.data(), ((CUstream)CU_STREAM_DEFAULT));
CUDA_RESOURCE_DESC res_desc = {
.resType = CUresourcetype::CU_RESOURCE_TYPE_ARRAY,
};
cuGraphicsSubResourceGetMappedArray(&res_desc.res.array.hArray, gl_framebuffer, 0, 0);
CUsurfObject output_surface;
cuSurfObjectCreate(&output_surface, &res_desc);
auto& viewLeft = renderer->views[0];
mat4 world;
mat4 view = viewLeft.view;
mat4 proj = viewLeft.proj;
mat4 worldViewProj = proj * view * world;
struct RenderPassArgs{
Mat4 transform;
int2 imageSize;
int numPoints;
float LOD;
};
auto fbo = renderer->views[0].framebuffer;
RenderPassArgs rpArgs;
*((glm::mat4*)&rpArgs.transform) = glm::transpose(worldViewProj);
rpArgs.imageSize = int2{ fbo->width, fbo->height };
rpArgs.numPoints = lasfile->points.size();
rpArgs.LOD = Runtime::LOD;
void* args[] = {
&rpArgs, &output_surface,
&ptr_render_buffer,
&nodes, &num_nodes, &sorted,
&ptr_points, &ptr_lines
};
int numGroups = 80;
int workgroupSize = 256;
auto kernel = prog_render->kernels["kernel"];
auto res_launch = cuLaunchCooperativeKernel(kernel,
numGroups, 1, 1,
workgroupSize, 1, 1,
0, 0, args);
if(res_launch != CUDA_SUCCESS){
const char* str;
cuGetErrorString(res_launch, &str);
printf("error: %s \n", str);
}
cuCtxSynchronize();
cuGraphicsUnmapResources(dynamic_resources.size(), dynamic_resources.data(), ((CUstream)CU_STREAM_DEFAULT));
}
}
};
};