-
Notifications
You must be signed in to change notification settings - Fork 13
/
voxelize_neighborhood_blockwise.cu
478 lines (355 loc) · 12.9 KB
/
voxelize_neighborhood_blockwise.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
namespace voxelize_neighborhood_blockwise{
#include <cooperative_groups.h>
#include "lib.h.cu"
#include "methods_common.h.cu"
namespace cg = cooperative_groups;
constexpr int clearGridSize = 8;
void computeWorkload(Node* nodes, uint32_t numNodes, NodePtr* workload, uint32_t& workloadSize){
auto grid = cg::this_grid();
if(isFirstThread()){
workloadSize = 0;
}
grid.sync();
processRange(0, numNodes, [&](int nodeIndex){
Node* node = &nodes[nodeIndex];
int numSamplesInChildren = 0;
bool allChildrenNonempty = true;
for(int childIndex = 0; childIndex < 8; childIndex++){
Node* child = node->children[childIndex];
if(child){
numSamplesInChildren += child->numPoints + child->numVoxels;
if((child->numPoints + child->numVoxels) == 0){
allChildrenNonempty = false;
}
}
}
bool isEmpty = node->numPoints == 0 && node->numVoxels == 0;
if(isEmpty && allChildrenNonempty){
uint32_t targetIndex = atomicAdd(&workloadSize, 1);
workload[targetIndex] = node;
}
});
grid.sync();
}
// constexpr int MODE_CENTRAL = 0;
// constexpr int MODE_ADJACENT = 1;
void voxelizePrimitives_central(
Point* points,
uint32_t numPoints,
Node* node,
int gridSize,
uint32_t* voxelGrid,
vec3 boxSize,
uint32_t& sh_numAccepted,
uint32_t* accepted,
uint32_t* sh_clearGrid
){
auto block = cg::this_thread_block();
float fGridSize = gridSize;
int numIterations = numPoints / block.num_threads() + 1;
for(int it = 0; it < numIterations; it++){
int pointIndex = block.num_threads() * it + block.thread_rank();
if(pointIndex >= numPoints) continue;
Point point = points[pointIndex];
// project to node's 128³ sample grid
float fx = fGridSize * (point.x - node->min.x) / boxSize.x;
float fy = fGridSize * (point.y - node->min.y) / boxSize.y;
float fz = fGridSize * (point.z - node->min.z) / boxSize.z;
vec3 pos = {fx, fy, fz};
{
vec3 samplePos = vec3(
floor(fx) + 0.5f,
floor(fy) + 0.5f,
floor(fz) + 0.5f
);
float dx = (pos.x - samplePos.x);
float dy = (pos.y - samplePos.y);
float dz = (pos.z - samplePos.z);
float ll = (dx * dx + dy * dy + dz * dz);
float w = 0.0f;
float l = sqrt(ll);
if(ll < 1.0f){
// exponential filter
// w = __expf(-ll * 0.5f);
// w = clamp(w, 0.0f, 1.0f);
// linear filter
w = 1.0 - l;
}else{
w = 0.0;
}
if(w > 0.0f){
uint64_t W = clamp(100.0f * w, 1.0f, 100.0f);
uint32_t ix = clamp(samplePos.x, 0.0f, fGridSize - 1.0f);
uint32_t iy = clamp(samplePos.y, 0.0f, fGridSize - 1.0f);
uint32_t iz = clamp(samplePos.z, 0.0f, fGridSize - 1.0f);
uint32_t voxelIndex = ix + gridSize * iy + gridSize * gridSize * iz;
// if(ox == 0.0f && oy == 0.0f && oz == 0.0f){
// uint32_t res = atomicOr(&voxelGrid[4 * voxelIndex + 3], (1u << 31u));
// bool isNewlyOccupied = (res & (1u << 31u)) == 0;
// if (isNewlyOccupied){
// uint32_t acceptedIndex = atomicAdd(&sh_numAccepted, 1);
// accepted[acceptedIndex] = voxelIndex;
// }
// }
uint64_t* cell = (uint64_t*)&voxelGrid[4 * voxelIndex + 0];
uint8_t* rgba = (uint8_t*)&point.color;
uint64_t R = W * rgba[0];
uint64_t G = W * rgba[1];
uint64_t B = W * rgba[2];
atomicAdd(cell + 0, uint64_t(R | (G << 32)));
uint64_t old = atomicAdd(cell + 1, uint64_t(B | (W << 32)));
bool isNewlyOccupied = (old >> 32) == 0;
if (isNewlyOccupied){
uint32_t acceptedIndex = atomicAdd(&sh_numAccepted, 1);
accepted[acceptedIndex] = voxelIndex;
}
}
}
}
}
void voxelizePrimitives_neighbors(
Point* points,
uint32_t numPoints,
Node* node,
int gridSize,
uint32_t* voxelGrid,
vec3 boxSize,
uint32_t& sh_numAccepted,
uint32_t* accepted,
uint32_t* sh_clearGrid
){
auto block = cg::this_thread_block();
float fGridSize = gridSize;
int numIterations = numPoints / block.num_threads() + 1;
for(int it = 0; it < numIterations; it++){
int pointIndex = block.num_threads() * it + block.thread_rank();
if(pointIndex >= numPoints) continue;
Point point = points[pointIndex];
// project to node's 128³ sample grid
float fx = fGridSize * (point.x - node->min.x) / boxSize.x;
float fy = fGridSize * (point.y - node->min.y) / boxSize.y;
float fz = fGridSize * (point.z - node->min.z) / boxSize.z;
vec3 pos = {fx, fy, fz};
for(float oz : {-1.0f, 0.0f, 1.0f})
for(float oy : {-1.0f, 0.0f, 1.0f})
for(float ox : {-1.0f, 0.0f, 1.0f})
{
vec3 samplePos = vec3(
floor(fx + ox) + 0.5f,
floor(fy + oy) + 0.5f,
floor(fz + oz) + 0.5f
);
float dx = (pos.x - samplePos.x);
float dy = (pos.y - samplePos.y);
float dz = (pos.z - samplePos.z);
float ll = (dx * dx + dy * dy + dz * dz);
float w = 0.0f;
float l = sqrt(ll);
if(ll < 1.0f){
// exponential filter
// w = __expf(-ll * 0.5f);
// w = clamp(w, 0.0f, 1.0f);
// linear filter
w = 1.0 - l;
}else{
w = 0.0;
}
if(w > 0.0f){
uint64_t W = clamp(100.0f * w, 1.0f, 100.0f);
uint32_t ix = clamp(samplePos.x, 0.0f, fGridSize - 1.0f);
uint32_t iy = clamp(samplePos.y, 0.0f, fGridSize - 1.0f);
uint32_t iz = clamp(samplePos.z, 0.0f, fGridSize - 1.0f);
uint32_t voxelIndex = ix + gridSize * iy + gridSize * gridSize * iz;
bool isCenter = ox == 0.0f && oy == 0.0f && oz == 0.0f;
bool isNeighbor = !isCenter;
if(isNeighbor){
uint64_t* cell = (uint64_t*)&voxelGrid[4 * voxelIndex + 0];
uint32_t currentW = voxelGrid[4 * voxelIndex + 3];
if(currentW > 0){
uint8_t* rgba = (uint8_t*)&point.color;
uint64_t R = W * rgba[0];
uint64_t G = W * rgba[1];
uint64_t B = W * rgba[2];
atomicAdd(cell + 0, uint64_t(R | (G << 32)));
atomicAdd(cell + 1, uint64_t(B | (W << 32)));
}
}
}
}
}
}
void main_voxelize(
Allocator& allocator,
Box3 box,
int numPoints,
void* nnnodes,
uint32_t numNodes,
void* sssorted)
{
// Point* sorted = (Point*)sssorted;
Node* nodes = (Node*)nnnodes;
auto grid = cg::this_grid();
auto block = cg::this_thread_block();
NodePtr* workload = allocator.alloc<NodePtr*>(sizeof(Node) * numNodes, "workload");
uint32_t& workloadSize = *allocator.alloc<uint32_t*>(sizeof(uint32_t), "workload counter");
uint32_t& totalVoxelBufferSize = *allocator.alloc<uint32_t*>(4, "total voxel buffer counter");
uint32_t& nodeVoxelBufferSize = *allocator.alloc<uint32_t*>(4, "node voxel buffer counter");
uint32_t& clearCounter = *allocator.alloc<uint32_t*>(4, "clear counter");
if(isFirstThread()){
totalVoxelBufferSize = 0;
nodeVoxelBufferSize = 0;
clearCounter = 0;
}
grid.sync();
int gridSize = VOXEL_GRID_SIZE;
// float fGridSize = gridSize;
int numCells = gridSize * gridSize * gridSize;
int acceptedCapacity = 200'000;
uint32_t& workIndexCounter = *allocator.alloc<uint32_t*>(4, "work index counter");
uint64_t acceptedByteSize = sizeof(uint32_t) * acceptedCapacity;
uint32_t* accepteds = allocator.alloc<uint32_t*>(grid.num_blocks() * acceptedByteSize, "list of accepted indices");
uint32_t* accepted = accepteds + grid.block_rank() * acceptedCapacity;
// Create one voxelgrid per workgroup, and a <voxelGrid> pointer that points to the active workgroup's memory
uint64_t voxelGridByteSize = 4 * sizeof(uint32_t) * numCells;
uint32_t* voxelGrids = allocator.alloc<uint32_t*>(grid.num_blocks() * voxelGridByteSize, "voxel sampling grids");
uint32_t* voxelGrid = voxelGrids + grid.block_rank() * 4 * numCells;
uint64_t& globalAllocatorOffset = *allocator.alloc<uint64_t*>(8);
__shared__ uint32_t sh_workIndex;
__shared__ uint32_t sh_numAccepted;
__shared__ uint32_t sh_clearGrid[clearGridSize * clearGridSize * clearGridSize];
// initially clear all voxel grids
clearBuffer(voxelGrids, 0, grid.num_blocks() * voxelGridByteSize, 0);
grid.sync();
if(isFirstThread()){
globalAllocatorOffset = allocator.offset;
printf("allocator.offset: ");
printNumber(allocator.offset, 10);
printf("\n");
}
grid.sync();
// loop from bottom of hierarchy to top until all work done,
// but limit loop range to max octree depth to be safe
for(int abc = 0; abc < 20; abc++){
grid.sync();
computeWorkload(nodes, numNodes, workload, workloadSize);
if(grid.thread_rank() == 0){
workIndexCounter = 0;
}
grid.sync();
if(workloadSize == 0) break;
while(workIndexCounter < workloadSize){
block.sync();
if(block.thread_rank() == 0){
sh_workIndex = atomicAdd(&workIndexCounter, 1);
sh_numAccepted = 0;
}
block.sync();
if(sh_workIndex >= workloadSize) break;
// retrieve the node that this block should process
Node* node = workload[sh_workIndex];
vec3 boxSize = node->max - node->min;
vec3 childSize = boxSize * 0.5f;
block.sync();
{ // this assumes a workgroup size of 256!!!
if(block.num_threads() != 256)
if(block.thread_rank() == 0)
{
printf("error, expecting a workgroup size of 256");
}
sh_clearGrid[2 * block.thread_rank() + 0] = 0;
sh_clearGrid[2 * block.thread_rank() + 1] = 0;
}
block.sync();
// first, central projection
for(int childIndex = 0; childIndex < 8; childIndex++){
Node* child = node->children[childIndex];
if(child == nullptr) continue;
block.sync();
// POINTS
voxelizePrimitives_central(
child->points, child->numPoints, node,
gridSize, voxelGrid, boxSize, sh_numAccepted, accepted, sh_clearGrid);
block.sync();
// VOXELS
voxelizePrimitives_central(
child->voxels, child->numVoxels, node,
gridSize, voxelGrid, boxSize, sh_numAccepted, accepted, sh_clearGrid);
block.sync();
}
block.sync();
// then, neighbor projection.
// neighbors only modify cells that were
// occupied by the central projection,
// which allows us to quickly clear only relevant cells
for(int childIndex = 0; childIndex < 8; childIndex++){
Node* child = node->children[childIndex];
if(child == nullptr) continue;
block.sync();
// POINTS
voxelizePrimitives_neighbors(
child->points, child->numPoints, node,
gridSize, voxelGrid, boxSize, sh_numAccepted, accepted, sh_clearGrid);
block.sync();
// VOXELS
voxelizePrimitives_neighbors(
child->voxels, child->numVoxels, node,
gridSize, voxelGrid, boxSize, sh_numAccepted, accepted, sh_clearGrid);
block.sync();
}
block.sync();
// now allocate memory for the voxels of this node
Point* voxelBuffer = nullptr;
if(block.thread_rank() == 0){
uint64_t bufferOffset = atomicAdd(&globalAllocatorOffset, 16ull * sh_numAccepted);
voxelBuffer = reinterpret_cast<Point*>(allocator.buffer + bufferOffset);
node->voxels = voxelBuffer;
node->numVoxels = sh_numAccepted;
}
block.sync();
// EXTRACT
int numIterations = sh_numAccepted / block.num_threads() + 1;
for(int it = 0; it < numIterations; it++){
int index = block.num_threads() * it + block.thread_rank();
if(index >= sh_numAccepted) continue;
uint32_t voxelIndex = accepted[index];
uint32_t R = voxelGrid[4 * voxelIndex + 0];
uint32_t G = voxelGrid[4 * voxelIndex + 1];
uint32_t B = voxelGrid[4 * voxelIndex + 2];
uint32_t W = voxelGrid[4 * voxelIndex + 3];
// bool occupied = (W & (1u << 31u)) != 0u;
// W = W & 0b0111111'11111111'11111111'11111111;
uint32_t color;
uint8_t* rgba = (uint8_t*)&color;
rgba[0] = R / W;
rgba[1] = G / W;
rgba[2] = B / W;
int ix = voxelIndex % gridSize;
int iy = (voxelIndex % (gridSize * gridSize)) / gridSize;
int iz = voxelIndex / (gridSize * gridSize);
float x = (float(ix) + 0.5f) * boxSize.x / float(gridSize);
float y = (float(iy) + 0.5f) * boxSize.y / float(gridSize);
float z = (float(iz) + 0.5f) * boxSize.z / float(gridSize);
// float cubeSize = boxSize.x / float(gridSize);
vec3 pos = {x, y, z};
pos = pos + node->min;
Point voxel;
voxel.x = pos.x;
voxel.y = pos.y;
voxel.z = pos.z;
voxel.color = color;
node->voxels[index] = voxel;
// Since only cells that contain points are affected,
// we can directly clear the cell now.
// (neighbors dont modify cells without actual geometry)
voxelGrid[4 * voxelIndex + 0] = 0;
voxelGrid[4 * voxelIndex + 1] = 0;
voxelGrid[4 * voxelIndex + 2] = 0;
voxelGrid[4 * voxelIndex + 3] = 0;
}
block.sync();
}
}
// PRINT("smallVolumeNodeCounter: %i \n", smallVolumeNodeCounter);
// PRINT("smallVolumePointCounter: %i k \n", (smallVolumePointCounter / 1000) );
}
};