-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpriority_maker.py
45 lines (30 loc) · 1.81 KB
/
priority_maker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import pandas as pd
import numpy as np
from datetime import datetime
import json
def run():
# Load the JSON file
with open('json_out/assignment_ids_to_info.json') as f:
assignment_data = json.load(f)
with open('json_out/course_ids_to_info.json') as f:
course_data = json.load(f)
# Convert JSON data to DataFrame
assignment_df = pd.DataFrame(assignment_data).T
course_df = pd.DataFrame(course_data).T
assignment_df['due_date'] = assignment_df['due_date'].apply(lambda x: datetime.strptime(x, '%Y-%m-%dT%H:%M:%SZ'))
assignment_df['course_id'] = assignment_df['course_id'].astype(str)
assignment_df['time_estimate'] = assignment_df['time_estimate'].apply(lambda x: x['time'])
course_df['st_dv'] = course_df['grade_values'].apply(lambda x: np.std(x))
course_df['mean'] = course_df['grade_values'].apply(lambda x: np.mean(x))
df = pd.merge(assignment_df, course_df, left_on = 'course_id', right_index = True)
df['points_z'] = (df['points'] - df['mean'])/ np.std(df['st_dv'])
df['time_left'] = df['due_date'].apply(lambda x: int((x - datetime.now()).total_seconds()/60))
df = df.drop(['mean', 'st_dv', 'grade_values', 'assignment_ids'], axis = 1)
df['time_left_z'] = (df['time_left'] - df['time_left'].mean())/df['time_left'].std()
df['time_estimate_z'] = (df['time_estimate'] - df['time_estimate'].mean())/df['time_estimate'].std()
#df['time_estimate_z'] = (df['time_estimate'] - dt['time_estimate'].mean())/df['time_estimate'].std()
df['priority'] = df['points_z'] - df['time_left_z'] + 0.5*df['time_estimate_z']
df = df.sort_values(by = 'priority', ascending = False).reset_index()
df = df.drop(['points_z', 'time_left', 'time_left_z', 'time_estimate_z','priority'], axis = 1).T
#print(df.T)
df.to_json("priority_list.json", indent=4)