forked from kevinlin311tw/CDCL-human-part-segmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
util.py
executable file
·77 lines (68 loc) · 2.52 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import numpy as np
from io import StringIO
import PIL.Image
from IPython.display import Image, display
def showBGRimage(a, fmt='jpeg'):
a = np.uint8(np.clip(a, 0, 255))
a[:,:,[0,2]] = a[:,:,[2,0]] # for B,G,R order
f = StringIO()
PIL.Image.fromarray(a).save(f, fmt)
display(Image(data=f.getvalue()))
def showmap(a, fmt='png'):
a = np.uint8(np.clip(a, 0, 255))
f = StringIO()
PIL.Image.fromarray(a).save(f, fmt)
display(Image(data=f.getvalue()))
#def checkparam(param):
# octave = param['octave']
# starting_range = param['starting_range']
# ending_range = param['ending_range']
# assert starting_range <= ending_range, 'starting ratio should <= ending ratio'
# assert octave >= 1, 'octave should >= 1'
# return starting_range, ending_range, octave
def getJetColor(v, vmin, vmax):
c = np.zeros((3))
if (v < vmin):
v = vmin
if (v > vmax):
v = vmax
dv = vmax - vmin
if (v < (vmin + 0.125 * dv)):
c[0] = 256 * (0.5 + (v * 4)) #B: 0.5 ~ 1
elif (v < (vmin + 0.375 * dv)):
c[0] = 255
c[1] = 256 * (v - 0.125) * 4 #G: 0 ~ 1
elif (v < (vmin + 0.625 * dv)):
c[0] = 256 * (-4 * v + 2.5) #B: 1 ~ 0
c[1] = 255
c[2] = 256 * (4 * (v - 0.375)) #R: 0 ~ 1
elif (v < (vmin + 0.875 * dv)):
c[1] = 256 * (-4 * v + 3.5) #G: 1 ~ 0
c[2] = 255
else:
c[2] = 256 * (-4 * v + 4.5) #R: 1 ~ 0.5
return c
def colorize(gray_img):
out = np.zeros(gray_img.shape + (3,))
for y in range(out.shape[0]):
for x in range(out.shape[1]):
out[y,x,:] = getJetColor(gray_img[y,x], 0, 1)
return out
def padRightDownCorner(img, stride, padValue):
h = img.shape[0]
w = img.shape[1]
pad = 4 * [None]
pad[0] = 0 # up
pad[1] = 0 # left
pad[2] = 0 if (h%stride==0) else stride - (h % stride) # down
pad[3] = 0 if (w%stride==0) else stride - (w % stride) # right
img_padded = img
pad_up = np.tile(img_padded[0:1,:,:]*0 + padValue, (pad[0], 1, 1))
img_padded = np.concatenate((pad_up, img_padded), axis=0)
pad_left = np.tile(img_padded[:,0:1,:]*0 + padValue, (1, pad[1], 1))
img_padded = np.concatenate((pad_left, img_padded), axis=1)
pad_down = np.tile(img_padded[-2:-1,:,:]*0 + padValue, (pad[2], 1, 1))
img_padded = np.concatenate((img_padded, pad_down), axis=0)
pad_right = np.tile(img_padded[:,-2:-1,:]*0 + padValue, (1, pad[3], 1))
img_padded = np.concatenate((img_padded, pad_right), axis=1)
return img_padded, pad