-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnorm.cl
126 lines (119 loc) · 3.04 KB
/
norm.cl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
__kernel void kernelSum(__global float * data, __global float * mean,
int cols, int window_count, int data_offset
#if defined(WANTVAR)
,__global float * var
#endif
#if defined(WANTMINMAX)
,__global float2 * minmax
#endif
)
{
int rep = ceil((float)window_count / get_global_size(1)),
group_id_y = get_group_id(1),
frame_index = group_id_y * rep;
int xIndex = get_global_id(0);
if (xIndex >= cols)
return;
float sum = 0,
sum2 = 0;
float2 minmaxv = (float2)(FLT_MAX, -FLT_MAX);
for (int r = 0; r < rep && frame_index < window_count; r++, frame_index++)
{
float v = data[data_offset + cols * frame_index + xIndex];
sum += v;
#if defined(WANTVAR)
sum2 += v * v;
#endif
#if defined(WANTMINMAX)
minmaxv.x = min(minmaxv.x, v);
minmaxv.y = max(minmaxv.y, v);
#endif
}
mean[cols * group_id_y + xIndex] = sum;
#if defined(WANTVAR)
var[cols * group_id_y + xIndex] = sum2;
#endif
#if defined(WANTMINMAX)
minmax[cols * group_id_y + xIndex] = minmaxv;
#endif
}
__kernel void kernelFinalizeSum(__global float * mean,
int cols, int rows, int window_count
#if defined(WANTVAR)
,__global float * var
#endif
#if defined(WANTMINMAX)
,__global float2 * minmax
#endif
)
{
int xIndex = get_global_id(0);
if (xIndex >= cols)
return;
float sum = 0,
sum2 = 0;
float2 minmaxv = (float2)(FLT_MAX, -FLT_MAX);
for (int i = 0; i < rows; i++)
{
sum += mean[cols * i + xIndex];
#if defined(WANTVAR)
sum2 += var[cols * i + xIndex];
#endif
#if defined(WANTMINMAX)
minmaxv.x = min(minmaxv.x, minmax[cols * i + xIndex].x);
minmaxv.y = max(minmaxv.y, minmax[cols * i + xIndex].y);
#endif
}
mean[xIndex] = sum / window_count;
#if defined(WANTVAR)
float v = rsqrt((sum2 - sum * (sum / window_count)) / (window_count - 1));
var[xIndex] = v;
#endif
#if defined(WANTMINMAX)
minmax[xIndex] = minmaxv;
#endif
}
__kernel void kernelNormalize(__global float * data, __global float * mean,
int cols, int window_count, int data_offset,
__local float * smean
#if defined(WANTVAR)
,__global float * var
,__local float * svar
#endif
#if defined(WANTMINMAX)
,__global float2 * minmax
,__local float * sminmax
#endif
)
{
int xIndex = get_global_id(0),
frame_index = get_global_id(1),
idx_shift = get_global_size(1);
if (xIndex >= cols)
return;
if (get_local_id(1) == 0)
{
float m = mean[xIndex];
smean[get_local_id(0)] = m;
#if defined(WANTVAR)
svar[get_local_id(0)] = var[xIndex];
#endif
#if defined(WANTMINMAX)
sminmax[get_local_id(0)] = 1.f / max(fabs(minmax[xIndex].x - m), fabs(minmax[xIndex].y - m));
#endif
}
barrier(CLK_LOCAL_MEM_FENCE);
while (frame_index < window_count)
{
int idx = data_offset + cols * frame_index + xIndex;
float v = data[idx];
#if defined(WANTVAR)
data[idx] = (v - smean[get_local_id(0)]) * svar[get_local_id(0)];
#elif defined(WANTMINMAX)
data[idx] = (v - smean[get_local_id(0)]) * sminmax[get_local_id(0)];
#else
data[idx] = v - smean[get_local_id(0)];
#endif
frame_index += idx_shift;
}
}