From 95bff3a8799869178f42e0f231a0273754e3f81a Mon Sep 17 00:00:00 2001 From: Matthieu Gomez Date: Wed, 15 Feb 2023 14:46:35 -0500 Subject: [PATCH] Update principal_eigenvalue.jl --- src/principal_eigenvalue.jl | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/src/principal_eigenvalue.jl b/src/principal_eigenvalue.jl index 1a4dbc7..706a580 100644 --- a/src/principal_eigenvalue.jl +++ b/src/principal_eigenvalue.jl @@ -17,14 +17,14 @@ In other words, all eigenvalues of 𝕋 have real part <= 0. This means that """ function principal_eigenvalue(𝕋; r0 = ones(size(𝕋, 1))) - η, r = 0.0, r0 - # faster in certain cases - if maximum(abs.(sum(𝕋, dims = 1))) < 1e-9 - a = 0.0 - vals, vecs = Arpack.eigs(𝕋 + a * I; v0 = collect(r0), nev = 1, which = :SM) + a, η, r = 0.0, 0.0, r0 + # faster in certain cases. Check that all sum up to zero + try + @assert maximum(abs.(sum(𝕋, dims = 1))) < 1e-9 + vals, vecs = Arpack.eigs(𝕋; v0 = collect(r0), nev = 1, which = :SM) η = vals[1] r = vecs[:, 1] - else + catch a = - minimum(diag(𝕋)) try vals, vecs = Arpack.eigs(𝕋 + a * I; v0 = collect(r0), nev = 1, which = :LM)