-
Notifications
You must be signed in to change notification settings - Fork 0
/
housing_model.py
266 lines (193 loc) · 7.69 KB
/
housing_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import numpy as np
import pandas as pd
from sklearn.ensemble import RandomForestRegressor
from sklearn.impute import SimpleImputer
from sklearn.metrics import mean_absolute_error
from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline
'''
Validation MAE for Random Forest Model: 16,165
'''
# True - testing against train set to measure accuracy.
# False - testing against test set and save for submission.
is_training = True
# Ordinal features to be mapped to 5-point score.
ordinal_5_features = ['ExterQual', 'ExterCond', 'HeatingQC', 'KitchenQual']
# Ordinal features to be mapped to 3-point score.
ordinal_3_features = ['PavedDrive']
# Ordinal features to be mapped to its respective score, using null as 0.
ord_5a_na_features = ['BsmtExposure']
ord_5b_na_features = ['PoolQC']
ord_6_na_features = ['BsmtQual', 'BsmtCond', 'FireplaceQu',
'GarageQual', 'GarageCond']
ord_7_na_features = ['BsmtFinType1', 'BsmtFinType2']
# Features with categorical data.
categorical_features = ['MSSubClass', 'MSZoning', 'Street',
'Alley', 'LotShape', 'LandContour',
'Utilities', 'LotConfig', 'LandSlope',
'Neighborhood', 'Condition1', 'Condition2',
'BldgType', 'HouseStyle', 'RoofStyle',
'RoofMatl', 'Exterior1st', 'Exterior2nd',
'MasVnrType', 'Foundation', 'Heating',
'CentralAir', 'Electrical', 'Functional',
'GarageType', 'GarageYrBlt', 'GarageFinish',
'PavedDrive', 'Fence', 'MiscFeature',
'SaleType', 'SaleCondition']
# Features with numerical missing data.
num_na_features = ['LotFrontage', 'LotArea', 'MasVnrArea',
'BsmtFinSF1', 'BsmtFinSF2', 'BsmtUnfSF',
'TotalBsmtSF', 'BsmtFullBath', 'BsmtHalfBath',
'GarageYrBlt', 'GarageCars', 'GarageArea']
# Features with no need to edit.
features = ['OverallQual', 'OverallCond', 'YearBuilt',
'YearRemodAdd', '1stFlrSF', '2ndFlrSF',
'LowQualFinSF', 'GrLivArea', 'FullBath',
'HalfBath', 'BedroomAbvGr', 'KitchenAbvGr',
'TotRmsAbvGrd', 'Fireplaces', 'WoodDeckSF',
'OpenPorchSF', 'EnclosedPorch', '3SsnPorch',
'ScreenPorch', 'PoolArea', 'MiscVal',
'YrSold']
def map_na_5a(dataset, features):
for feature in features:
rankings = {
'Gd' : 4,
'Av' : 3,
'Mn' : 2,
'No' : 1,
np.nan : 0}
dataset[feature] = dataset[feature].map(rankings)
return features
def map_na_5b(dataset, features):
for feature in features:
rankings = {
'Ex' : 4,
'Gd' : 3,
'TA' : 2,
'Fa' : 1,
np.nan : 0}
dataset[feature] = dataset[feature].map(rankings)
return features
def map_na_6(dataset, features):
for feature in features:
rankings = {
'Ex' : 5,
'Gd' : 4,
'TA' : 3,
'Fa' : 2,
'Po' : 1,
np.nan : 0}
dataset[feature] = dataset[feature].map(rankings)
return features
def map_na_7(dataset, features):
for feature in features:
rankings = {
'GLQ' : 6,
'ALQ' : 5,
'BLQ' : 4,
'Rec' : 3,
'LwQ' : 2,
'Unf' : 1,
np.nan : 0}
dataset[feature] = dataset[feature].map(rankings)
return features
# Numericize rankings into a 5-point score.
def rank_ordinal_5(series):
rankings = {
'Ex' : 4,
'Gd' : 3,
'TA' : 2,
'Fa' : 1,
'Po' : 0}
return series.map(rankings)
# Numericize rankings into a 3-point score.
def rank_ordinal_3(series):
rankings = {
'Y' : 2,
'P' : 1,
'N' : 0}
return series.map(rankings)
# Returns the X used in testing and training.
def clean_data(dataset):
# Preprocessing and imputation for missing numerical data.
median_imputer = SimpleImputer(strategy='median')
for feature in num_na_features:
median_imputer = median_imputer.fit(
dataset[[feature]])
dataset[feature] = median_imputer.transform(
dataset[[feature]]).ravel()
# Apply data cleaning to ordinal features.
for feature in ordinal_5_features:
dataset[feature] = rank_ordinal_5(dataset[feature])
# Impute any missing values.
median_imputer = median_imputer.fit(
dataset[[feature]])
dataset[feature] = median_imputer.transform(
dataset[[feature]]).ravel()
for feature in ordinal_3_features:
dataset[feature] = rank_ordinal_3(dataset[feature])
# Clean ordinal features by assigning numericals including to null values.
map_na_5a(dataset, ord_5a_na_features)
map_na_5b(dataset, ord_5b_na_features)
map_na_6(dataset, ord_6_na_features)
map_na_7(dataset, ord_7_na_features)
# Create dummies for features with nan.
hd_dummies = pd.get_dummies(
dataset[categorical_features], columns=categorical_features)
# Combine all features together.
X = pd.concat([dataset[features], dataset[num_na_features],
dataset[ordinal_5_features], dataset[ordinal_3_features],
dataset[ord_7_na_features], dataset[ord_6_na_features],
dataset[ord_5a_na_features], dataset[ord_5b_na_features],
hd_dummies],
axis=1)
return X
# Path of the file to read.
iowa_file_path = 'train.csv'
home_data = pd.read_csv(iowa_file_path)
# Create target object and call it y
y = home_data.SalePrice
# Preprocess and combine all features together.
X = clean_data(home_data)
# Define the model. Set random_state to 1.
pipe = Pipeline(steps=[('regressor', RandomForestRegressor(
random_state=1))])
if is_training:
# Split into validation and training data.
train_X, val_X, train_y, val_y = train_test_split(X, y, random_state=1)
# Fit model on the training data.
pipe.fit(train_X, train_y)
pipe_pred = pipe.predict(val_X)
pipe_mae = mean_absolute_error(pipe_pred, val_y)
print("Validation MAE under Random Forest Model: {:,.0f}".
format(pipe_mae))
else:
# Path to file you will use for predictions.
test_data_path = 'test.csv'
# Read test data file using pandas.
test_data = pd.read_csv(test_data_path)
# Create test_X including only the columns you used for prediction.
test_X = clean_data(test_data)
# Check for any columns to drop that may not appear in either set.
for column in X.columns:
matching = False
for test_column in test_X.columns:
if column == test_column:
matching = True
if matching == False:
del X[column]
for test_column in test_X.columns:
matching = False
for column in X.columns:
if column == test_column:
matching = True
if matching == False:
del test_X[test_column]
# Fit model on all the training data.
pipe.fit(X, y)
# Make predictions which we will submit.
test_pred = pipe.predict(test_X)
# Save predictions in format used for competition.
output = pd.DataFrame({'Id': test_data.Id,
'SalePrice': test_pred})
output.to_csv('submission.csv', index=False)
print('File successfully saved!')