-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgemma.py
609 lines (473 loc) · 24.2 KB
/
gemma.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
import torch
from torch import nn
from typing import Optional, Tuple, List
from torch.nn import CrossEntropyLoss
import math
from siglip import SiglipVisionConfig, SiglipVisionModel
class KVCache:
def __init__(self, ) -> None:
self.key_cache = List[torch.Tensor] = []
self.value_cache = List[torch.Tensor] = []
def num_items(self):
if len(self.key_cache) == 0:
return 0
else:
# [batch_size, num_heads, seq_len, head_dim] hence the -2 for the seq_len
return self.key_cache[0].shape[-2]
def update(
self,
key_states: torch.Tensor,
value_states: torch.Tensor,
layer_idx: int,
) -> Tuple[torch.Tensor, torch.Tensor]:
if len(self.key_cache) == layer_idx:
# if we never added anything to the kv cache of this layer, let's create it
self.key_cache.append(key_states)
self.value_cache.append(value_states)
else:
# otherwise we concatenate the new keys and values with the existing ones
# each tensor has shape [batch_size, num_heads, seq_len, head_dim]
self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=-2)
self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=-2)
# we can return the existing keys + the new ones
return self.key_cache[layer_idx], self.value_cache[layer_idx]
class GemmaConfig():
def __init__(
self,
vocab_size,
hidden_size,
intermediate_size,
num_hidden_layers,
num_attention_heads,
num_key_value_heads,
head_dim=256,
max_position_embeddings=8192,
rms_norm_eps=1e-6,
rope_theta=10000.0,
attention_bias=False,
attention_dropout=0.0,
pad_token_id=None,
**kwargs,
):
super().__init__()
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.head_dim = head_dim
self.num_key_value_heads = num_key_value_heads
self.rms_norm_eps = rms_norm_eps
self.rope_theta = rope_theta
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
self.pad_token_id = pad_token_id
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
class GemmaRotaryEmbedding(nn.Module):
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
super().__init__()
self.dim = dim # this is set to the head_dim, i,e each head has its own rotary embedding
self.max_position_embeddings = max_position_embeddings # tells us the max sequence length
self.base = base
# Calculate the theta according to the formula theta_i = base^(2i/dim) where i = 0, 1, 2, 3, ... dim//2
# this is slightly different from the paper, where the theta is calculated as base^(2i/dim) where i = 0, 1, 2, 3, ... dim//2
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.float) / self.dim))
self.register_buffer("inv_freq", tensor=inv_freq, presistent=False)
@torch.no_grad()
def forward(self, x, position_ids, seq_len=None):
# x: [bs, num_attention_heads, seq_len, head_dim]
self.inv_freq.to(x.device)
#Copy the inv_freq tensor for batch in the sequence
# inv_freq_expanded: [Batch_Size, Head_Dim // 2, 1]
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
# position_ids_expanded: [Batch_Size, 1, Seq_Len]
position_ids_expanded = position_ids[:, None, :].float()
device_type = x.device.type_as
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False):
# Multiply each theta by the position (which is the argument of the sin and cos functions)
# freqs: [Batch_Size, Head_Dim//2, Seq_len] @ [Batch_Size, 1, Seq_len] --> [Batch_Size, Seq_Len, Head_Dim //2]
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
# emb: [Batch_Size, Seq_len, Head_Dim]
emb = torch.cat((freqs, freqs), dim=-1)
# cos, sin: [Batch_Size, Seq_len, Head_Dim]
cos = emb.cos()
sin = emb.sin()
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
def rotate_half(x):
# slightly different from the paper
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, unsqueeze_dim=1):
cos = cos.unsqueeze(unsqueeze_dim) # Add the head dimension
sin = sin.unsqueeze(unsqueeze_dim) # Add the head dimension
# Apply the formula9340 of the Rotary Encoding paper
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
class GemmaAttention(nn.Module):
def __init__(self, config: GemmaConfig, layer_idx: Optiona[int] = None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.attention_dropout = config.attention_dropout
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = config.head_dim
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.max_position_embeddings = config.max_position_embeddings
self.rope_theta = config.rope_theta
self.is_causal = True
assert self.hidden_size % self.num_heads == 0, "Hidden size must be divisible by the number of heads"
# NUmber of heads = 8
# Hidden_Size = 1024
# Head_Dim = 1024 / 8 = 128
# Wq = [1024, 8 * 128] = [ 1024, 1024]
# in grouped query attention
# the KV are compressed to save memory transfer. There is slight change in accuracy
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
self.out_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
self.rotary_emb = GemmaRotaryEmbedding(
self.head_dim,
max_position_embeddings=self.max_position_embeddings,
base=self.rope_theta,
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
kv_cache: Optional[KVCache] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_state)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q-len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
cos, sin = self.rotary_emb(value_states, position_ids, seq_len=None)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if kv_cache is not None:
key_states, value_states = kv_cache.update(keys_states, value_states, self.layer_idx)
# here we are using the naive implementation of the attention
# in fact reversing the grouped query attention optimization
# the flash attention can leverage from the grouped query attention
# or any kernel
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
# Q * K^T / sqrt(head_dim)
# [Batch_Size, Num_Heads, Seq_Len, Head_Dim] * [Batch_Size, Num_Heads, Head_Dim, Seq_Len_KV] -> [Batch_Size, Num_Heads, Seq_Len, Seq_Len_KV]
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
assert attention_mask is not None, "Not implemented Yet!"
attn_weights = attn_weights + attention_mask
# Apply the softmax
# [Batch_Size, Num_Heads, Seq_Len, Seq_Len_KV]
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtypes)
# Apply the dropout only on training
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropput, training=self.training)
# multiply the attention weights with the values states
# [Batch_Size, Num_Heads, Seq_Len, Seq_Len_KV] * [Batch_Size, Num_Heads, Seq_Len_KV, Head_Dim] -> [Batch_Size, Num_Heads, Seq_Len, Head_Dim]
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"attn_output should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f"{attn_output.size()}"
)
# Make sure the sequence length is the second dimension
# [Batch_size, Num_Heads_Q, Seq_Len_Q, Head_Dim] -> [Batch_Size, Seq_Len_Q, Num_Heads_Q, Head_Dim]
attn_output = attn_output.transpose(1, 2).contiguous()
# Concatenate all the heads together
attn_output = attn_output.view(bsz, q_len, -1)
# We need to mix the heads together than just concatenation of all head dimensions
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights
class GemmaMLP(nn.Module):
def __init__(self, config: GemmaConfig):
super().__init__()
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
def forward(self, x):
# Equivalent to
# y = self.gate_proj(x)
# y = torch.gelu(y, approximate="tanh")
# j = self.up_proj(x)
# z = y * j # [Batch_Size, Seq_Len, Intermediate_Size]
# z = self.down_proj(z) # [Batch_Size, Seq_Len, Intermediate_Size] -> [Batch_Size, Seq_Len, Hidden_Size]
# return z
return self.down_proj(nn.functional.gelu(self.gate_proj(x), approximate="tanh") * self.up_proj(x))
class GemmaDecoderLayer(nn.Module):
def __init__(self, config: GemmaConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = GemmaAttention(config=config, layer_idx=layer_idx)
self.mlp = GemmaMLP(config)
self.input_layernorm = GemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = GemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
kv_cache: Optional[KVCache] = None,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
#[ Batch_Size, Seq_len]
hidden_states = self.input_layernorm(hidden_states)
#[Batch_Size, Seq_Len, Hidden_Size]
hidden_states, _, = self.self_attn(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
kv_cache=kv_cache,
)
#[Batch_Size, Seq_Len, Hidden_Size]
hidden_states = residual + hidden_states
#[Batch_Size, Seq_Len, Hidden_Size]
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
#[Batch_Size, Seq_Len, Hidden_Size]
hidden_states = self.mlp(hidden_states)
#[Batch_Size, Seq_Len, Hidden_Size]
hidden_states = residual + hidden_states
return hidden_states
class GemmaRMSNorm(nn.Module):
def __init__(self, dim: int, eps: float = 1e-6):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def _norm(self, x):
# this calculating the 1 / sqrt(mean(x^2)) and then multiply it with x. same as ai/RMS(a) in the paper
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
output = self._norm(x)
# llama does x.to(float16) * w while Gemma does (x*w).to(float16)
output = output * (1.0 + self.weight.float())
return output.type_as(x)
class GemmaModel(nn.Module):
def __init__(self, config: GemmaConfig):
super().__init__()
self.config = config
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
# tie the weights of the embeddings and the logits layer
# this layer is [vocab_size, hidden_size] can be shared with the logits layer [hidden_size, vocab_size]
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=self.padding_idx)
self.layers = nn.ModuleList(
[GemmaDecoderLayer(config, layer_id) for layer_id in range(config.num_hidden_layers)]
)
self.norm = GemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def get_input_embeddings(self):
return self.embed_tokens
def forward(
self,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
kv_cache: Optional[KVCache] = None,
) -> torch.FloatTensor:
# [Batch_Size, Seq_Len, Hidden_Size]
hidden_states = inputs_embeds
#[Batch_Size, Seq_len, Hidden_Size]
normalizer = torch.tensor(self.config.hidden_size ** 0.5, dtype=hidden_states.dtype)
hidden_states = hidden_states * normalizer
for decoder_layer in self.layers:
hidden_states = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
kv_cache=kv_cache,
)
hidden_states = self.norm(hidden_states)
#[Batch_Size, Seq_Len, Hidden_Size]
return hidden_states
class GemmaForCausalLM(nn.Module):
def __init__(self, config: GemmaConfig):
super().__init__()
self.config = config
self.model = GemmaModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# we share the weights between the embeddings and the logits layer
def tie_weights(self):
self.lm_head.weight = self.model.get_input_embeddings().weight
def get_input_embeddings(self):
return self.model.embed_tokens
def forward(self,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
kv_cache: Optional[KVCache] = None
) -> Tuple:
outputs = self.model(
attention_mask=attention_mask,
postion_ids=position_ids,
inputs_embeds=inputs_embeds,
kv_cache=kv_cache,
)
hidden_states = outputs
logits = self.lm_head(hidden_states)
logits = logits.float()
return_data = {
"logits": logits,
}
if kv_cache is not None:
return_data["kv_cache"] = kv_cache
return return_data
# convert the image features dims to the hidden size of the LLM
class PaliGemmaMultiModalProjector(nn.Module):
def __init__(self, config: PaliGemmaConfig):
super().__init__()
self.linear = nn.Linear(config.vision_config.hidden_size, config.vision_config.projection_dim, bias=True)
def forward(self, image_features):
#[Batch_Size, Num_Patches, Hidden_Size] -> [Batch_Size, Num_Patches, Projection_Dim]
hidden_states = self.linear(image_features)
return hidden_states
class PaliGemmaConfig:
def __init__(
self,
vision_config: SiglipVisionConfig,
text_config=None,
ignore_index=-100,
image_token_index=2560000,
vocab_size=257152,
projection_dim=2048,
hidden_size=2048,
pad_token_id=None,
**kwargs,
):
super().__init__(**kwargs)
self.ignore_index = ignore_index
self.image_token_index = image_token_index
self.vocab_size = vocab_size
self.projection_dim = projection_dim
self.hidden_size = hidden_size
self.vision_config = vision_config
self.is_encoder_decoder = False
self.pad_token_id = pad_token_id
self.vision_config = SiglipVisionConfig(**vision_config)
self.text_config = text_config
self.text_config = GemmaConfig(**text_config, pad_token_id=pad_token_id)
self.vocab_size = self.text_config.vocab_size
self.text_config.num_image_tokens = (self.vision_config.image_size // self.vision_config.patch_size) ** 2
self.vision_config.projection_dim = projection_dim
class PaliGemmaForConditionalGeneration(nn.Module):
def __init__(self, config: PaliGemmaConfig):
super().__init__()
self.config = config
self.vision_tower = SiglipVisionModel(config.vision_config)
self.multi_modal_encoder = PaliGemmaMultiModalProjector(config)
self.vocab_size = config.vocab_size
language_model = GemmaForCausalLM(config)
self.language_model = language_model
self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
def tie_weights(self):
self.language_model.tie_weights()
def _merge_input_ids_with_images_features(
self, images_features, inputs_embeds, input_ids, attention_mask, kv_cache
):
_, _, embed_dim = image_features.shape
batch_size, sequence_length = input_ids.shape
dtype, device = inputs_embeds.dtype, inputs_embeds.device
scaled_image_features = image_features / (self.config.hidden_size ** 0.5)
# combine the embeddings of the image tokens, text tokens and mask out all the padding tokens
final_embeddings = torch.zeros(batch_size, sequence_length, embed_dim, dtype=inputs_embeds.dtype, device=inputs_embeds.device)
# Shape: [Batch_Size, Seq_Len]. True for text tokens
text_mask = (input_ids != self.config.image_token_index) & (input_ids != self.pad_token_id)
# Shape: [Batch_Size, Seq_Len]. True for image tokens
image_mask = input_ids == self.config.image_token_index
# Shape: [Batch_Size, Seq_Len]. True for padding tokens
pad_mask = input_ids == self.pad_token_id
# We need to expand the masks to the embedding dims other wise we can not use torch.Where
# eg. [Batch_Size, Seq_Len] -> [Batch_Size, Seq_Len, Embed_Dim]
# lets say <image_token> is 567, <BOS> is 1, \n is 2
# input_ids = [ 567, 567, 567, 1, 65, 78, 99, 2]
# text_mask = [ 0, 0, 0, 1, 1, 1, 1, 0]
# image_mask = [ 1, 1, 1, 0, 0, 0, 0, 0]
# pad_mask = [ 0, 0, 0, 0, 0, 0, 0, 0] -- we dont have any padding tokens in this example
text_mask_expanded = text_mask.unseqeeze(-1).expand(-1, -1, embed_dim)
pad_mask_expanded = pad_mask.unsqueeze(-1).expand(-1, -1, embed_dim)
image_mask_expanded = image_mask.unsqueeze(-1).expand(-1, -1, embed_dim)
final_embeddings = torch.where(text_mask_expanded, inputs_embeds, final_embeddings)
#Insert image embeddings. We cant use torch.where because the sequence length of the scaled_image_features
# is not equal the sequence length of the final_embeddings
# but does the same as torch.where
final_embeddings = final_embedding.masked_scatter(image_mask_expanded, scaled_image_features)
final_embeddings = torch.where(pad_mask_expanded, torch.zeros_like(final_embeddings), final_embeddings)
### CREATE THE ATTENTION MASK
dtype, device = inputs_embeds.dtype, inputs_embeds.device
min_dtype = torch.finfo(dtype).min
q_len = inputs_embeds.shape[1]
if kv_cache is None or kv_cache.num_items() == 0:
# Do not mask any token, because we're in the prefill phase
# This only works when we have no padding
causal_mask = torch.full(
(batch_size, q_len, q_len), fill_value=0, dtype=dtype, device=device
)
else:
# Since we are generating tokens, the query must be a single token
assert q_len == 1, "Query length must be 1 during generation"
kv_len = kv_cache.num_items()
# when using the kv cache, we dont need to mask out anything because we are generating only
# one token at a time
causal_mask = torch.full((batch_size, q_len, kv_len), fill_value=0, dtype=dtype, device=device)
# add the head dimension
# [Batch_Size, Seq_Len, Seq_Len] -> [Batch_Size, Num_Heads, Seq_Len, Seq_Len]
causal_mask = causal_mask.unsqueeze(1)
if kv_cache is not None and kv_cache.num_items() > 0:
# The position of the query is just the last position
position_ids = attention_mask.cumsum(-1)[:, -1]
if position_ids.dim() == 1:
position_ids = position_ids.unsqueeze(0)
else:
#create a position_ids based on the size of the attention mask
# For masked tokens, use the number 1 as position.
position_ids = (attention_mask.cumsum(-1).masked_fill_((attention_mask == 0), 1) - 1)
return final_embeddings, causal_mask, position_ids
def forward(
self,
input_ids: torch.LongTensor = None,
pixel_values: torch.FloatTensor = None,
attention_mask: Optional[torch.Tensor] = None,
kv_cache: Optional[KVCache] = None,
) -> Tuple:
# 1. Extract the input embeddings
# shape: (Batch_size, Seq_len, Hidden_size)
inputs_embeds = self.language_model.get_input_embeddings()(input_ids)
# 2. Merge the text and images
# [Batch_Size, Channels, Height, Width] -> [Batch_Size, Num_Patches, Embed_Size]
selected_image_feature = self.vision_tower(pixel_values.to(inputs_embeds.dtype))
# [Batch_Size, Num_Patches, Embed_Size] -> [Batch_Size, Num_Patches, Hidden_Size]
# here the Embed_Size is from the the vision tower, to make the dimensions match
# we need to project the image features to the hidden size of the LLM
images_features = self.multi_modal_encoder(selected_image_feature)
# 3. Merge the embeddings of the text and the image tokens
inputs_embeds, attention_mask, position_ids = \
self._merge_input_ids_with_images_features(
images_features,
inputs_embeds,
input_ids,
attention_mask,
kv_cache
)
#4. Forward pass through the language model
outputs = self.language_model(
attention_mask= attention_mask,
position_ids= position_ids,
inputs_embeds= inputs_embeds,
kv_cache= kv_cache
)
return outputs