-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathreproduce.R
204 lines (172 loc) · 7.95 KB
/
reproduce.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# reproduce the results of the paper
library(devtools)
install_github("mengluchu/multibandsBFAST/multibandsBFAST")
library(multibandsBFAST)
require(zoo)
require(stargazer)
require(plyr)
#data
data(Boliviaarrno)
data(Brazilarrno)
data(Boliviaarr)
data(Brazilarr)
data(Braziltime)
data(time_B1000)
# for validation
data(BDbo)
data(BDbr)
data(bobo5)
data(brbo5)
data(valichartbo)
data(valichartbr)
## Bolivia site
## can increase the mc.cores for paralle processing
historypca <- mcwrap(multibandsarr = Boliviaarr, multibandsarrno = Boliviaarrno, timearr = time_B1000,
history = "all", lastordetect = "last", scoreselect = F, sca = F, hisweight = T,
moy = 1, mc.cores = 1)
pcascore <- mcwrap(multibandsarr = Boliviaarr, multibandsarrno = Boliviaarrno, timearr = time_B1000,
history = "all", lastordetect = "last", scoreselect = T, sca = F, hisweight = F,
moy = 1, mc.cores = 1)
# vegetation indices
# preprocess # note: preprocess each bands instead of the vegetation indices
Boliviaarrno <- aaply(Boliviaarrno, c(1, 2), rmsat) #remove extreme value outside valid range (1-10000)
Boliviaarrno <- aaply(Boliviaarrno, c(1, 2), removedips) # remove low value
Boliviaarr <- aaply(Boliviaarr, c(1, 2), rmsat) #remove extreme value outside valid range (1-10000)
Boliviaarr <- aaply(Boliviaarr, c(1, 2), removedips) # remove low value
ndmiarr <- (Boliviaarr[4, , ] - Boliviaarr[5, , ])/(Boliviaarr[4, , ] + Boliviaarr[5,
, ])
ndviarr <- (Boliviaarr[4, , ] - Boliviaarr[3, , ])/(Boliviaarr[4, , ] + Boliviaarr[3,
, ])
ndmiarrno <- (Boliviaarrno[4, , ] - Boliviaarrno[5, , ])/(Boliviaarrno[4, , ] + Boliviaarrno[5,
, ])
ndviarrno <- (Boliviaarrno[4, , ] - Boliviaarrno[3, , ])/(Boliviaarrno[4, , ] + Boliviaarrno[3,
, ])
# tct indices
tctbo <- tct(Boliviaarr, 236)
tctbono <- tct(Boliviaarrno, 236)
#
NDVI <- wrapVI(multibandsarr = ndviarr, multibandsarrno = ndviarrno, timearr = time_B1000,
history = "all", moy = 1)
NDMI <- wrapVI(multibandsarr = ndmiarr, multibandsarrno = ndmiarrno, timearr = time_B1000,
history = "all", moy = 1)
tctbright <- wrapVI(multibandsarr = tctbo[[1]], multibandsarrno = tctbono[[1]], timearr = time_B1000,
history = "all", moy = 1)
tctgreen <- wrapVI(multibandsarr = tctbo[[2]], multibandsarrno = tctbono[[2]], timearr = time_B1000,
history = "all", moy = 1)
tctwet <- wrapVI(multibandsarr = tctbo[[3]], multibandsarrno = tctbono[[3]], timearr = time_B1000,
history = "all", moy = 1)
##### Brazil site ################################
historypcabr <- mcwrap(multibandsarr = Brazilarr, multibandsarrno = Brazilarrno, timearr = Braziltime,
history = "all", lastordetect = "last", scoreselect = F, sca = F, hisweight = T,
moy = 1, mc.cores = 1)
pcascorebr <- mcwrap(multibandsarr = Brazilarr, multibandsarrno = Brazilarrno, timearr = Braziltime,
history = "all", lastordetect = "last", scoreselect = T, sca = F, hisweight = F,
moy = 1, mc.cores=1)
## vegetation indices
Brazilarr <- aaply(Brazilarr, c(1, 2), rmsat) #remove extreme value outside valid range (1-10000)
Brazilarr <- aaply(Brazilarr, c(1, 2), removedips) # remove low value
Brazilarrno <- aaply(Brazilarrno, c(1, 2), rmsat) #remove extreme value outside valid range (1-10000)
Brazilarrno <- aaply(Brazilarrno, c(1, 2), removedips) # remove low value
ndmiarrbr <- (Brazilarr[4, , ] - Brazilarr[5, , ])/(Brazilarr[4, , ] + Brazilarr[5,
, ])
ndviarrbr <- (Brazilarr[4, , ] - Brazilarr[3, , ])/(Brazilarr[4, , ] + Brazilarr[3,
, ])
ndmiarrnobr <- (Brazilarrno[4, , ] - Brazilarrno[5, , ])/(Brazilarrno[4, , ] + Brazilarrno[5,
, ])
ndviarrnobr <- (Brazilarrno[4, , ] - Brazilarrno[3, , ])/(Brazilarrno[4, , ] + Brazilarrno[3,
, ])
# tct
tctbr <- tct(Brazilarr, 120)
tctbrno <- tct(Brazilarrno, 120)
NDVIbr <- wrapVI(multibandsarr = ndviarrbr, multibandsarrno = ndviarrnobr, timearr = Braziltime,
history = "all", moy = 1)
NDMIbr <- wrapVI(multibandsarr = ndmiarrbr, multibandsarrno = ndmiarrnobr, timearr = Braziltime,
history = "all", moy = 1)
tctbrightbr <- wrapVI(multibandsarr = tctbr[[1]], multibandsarrno = tctbrno[[1]],
timearr = Braziltime, history = "all", moy = 1)
tctgreenbr <- wrapVI(multibandsarr = tctbr[[2]], multibandsarrno = tctbrno[[2]],
timearr = Braziltime, history = "all", moy = 1)
tctwetbr <- wrapVI(multibandsarr = tctbr[[3]], multibandsarrno = tctbrno[[3]], timearr = Braziltime,
history = "all", moy = 1)
valichartbo[, "historyPCA"] <- historypca
valichartbo[, "PCAscore"] <- pcascore
valichartbo[, "ndvi2"] <- NDVI
valichartbo[, "ndmi2"] <- NDMI
valichartbo[, "tctbright"] <- tctbright
valichartbo[, "tctgreen"] <- tctgreen
valichartbo[, "tctwet"] <- tctwet
valichartbr[, "historyPCA"] <- historypcabr
valichartbr[, "PCAscore"] <- pcascorebr
valichartbr[, "ndvi"] <- NDVIbr
valichartbr[, "ndmi"] <- NDMIbr
valichartbr[, "tctbright"] <- tctbrightbr
valichartbr[, "tctgreen"] <- tctgreenbr
valichartbr[, "tctwet"] <- tctwetbr
# validation bolivia
bovali <- valitable(cx2 = valichartbo, oridensetime = time_B1000, EarlyDateIsCommission = T,
oritemplate = bobo5, totalp = 1136, nofchange = 103, colmWith = 2)
# Brazil
brvali <- valitable(valichartbr, Braziltime, brbo5, totalp = 470, EarlyDateIsCommission = T,
nofchange = 141, colmWith = 2)
# generate table
stargazer(brvali, summary = FALSE)
stargazer(bovali, summary = FALSE)
#####################################
# return ts tts <- returnts2(inputarr = Boliviaarrno, timearr = time_B1000,
# tctl1=256, loca = i, preprocess = F, monitoryear = 2005 )
# reproduce pc loading figure
rep_figloading <- function(arr, timearr, varname = "bands", plotw = "bands", xaxisname = "bands",
obsname = "temporal spatial points", preprocess=F) {
if(preprocess){
b1 <- aaply(arr, c(1, 2), rmsat) #remove extreme value outside valid range (1-10000)
b2 <- aaply(b1, c(1, 2), removedips) # remove low value
} else b2=arr
Boliviaarr2 <- rearrange_array(b2, flatten = c(2, 3) )
fit <- prcomp(na.omit(t(Boliviaarr2)), scale. = T)
plotloading(PCfit = fit, varname = varname, obsname = obsname, xaxisname = xaxisname,
addline = 0, nl = 4, plotw = plotw)
}
rep_figloading(arr = Boliviaarrno, timearr = time_B1000, preprocess = F)
rep_figloading(arr = Brazilarrno, timearr = Braziltime, preprocess = F)
# reproduce plot time series figures, image is stored, name specified in the
# nameplot
for (i in c(1, 27)) {
plotts2(arr = Boliviaarr, tctl1 = 236, timearr = time_B1000, id = i, BTestchangeDate = BDbo,
nameplot = "boli_", monitoryear = 2005)
}
for (i in c(2, 9)) {
plotts2(arr = Brazilarr, tctl1 = 120, timearr = Braziltime, id = i, BTestchangeDate = BDbr,
nameplot = "br_", monitoryear = 2005)
}
# check seasonatlity of PC
library(zoo)
arrpc2no <- c() # save results
# i can be 1: 1033
for (i in 1:1033) {
tts <- returnpc2(inputarr = Boliviaarrno, timearr = time_B1000, loca = i, preprocess = F,
monitoryear = 2005)
time1 <- time_B1000[-tts[[1]]] # when compute PCA, the NA values are removed. time1 is the time of PC scors.
otss <- zoo(tts[[3]], time1)
rs <- checkseats(coredata(otss), order = 1, time1 = time(otss))
arrpc2no[i] <- rs
}
summary(arrpc2no)
# check periodogram
pc2sa <- c()
for (i in 1:1033) {
tts <- returnpc2(inputarr = Boliviaarrno, timearr = time_B1000, loca = i, preprocess = F,
monitoryear = 2005)
time1 <- time_B1000[-tts[[1]]] # when compute PCA, the NA values are removed. time1 is the time of PC scors.
otss <- zoo(tts[[3]], time1)
trimts <- window(otss, start = as.Date("2003-01-01"), end = as.Date("2014-12-31"))
monthts <- aggregate(trimts, as.yearmon, mean)
rt <- as.Date(range(time(monthts)))
z1 <- zoo(, as.yearmon(seq(from = rt[1], to = rt[2], by = "month")))
zm1 <- merge(monthts, z1)
zm <- na.approx(zm1)
sazm <- spec.ar(zm)
mf <- sazm$freq[which.max(sazm$spec)]
# rs<-checkseats(coredata(otss), order=1, time1=time(otss))
pc2sa[i] <- mf
}
summary(pc2sa)