-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path3-wannierisation.jl
175 lines (144 loc) · 6.27 KB
/
3-wannierisation.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
### A Pluto.jl notebook ###
# v0.19.26
using Markdown
using InteractiveUtils
# This Pluto notebook uses @bind for interactivity. When running this notebook outside of Pluto, the following 'mock version' of @bind gives bound variables a default value (instead of an error).
macro bind(def, element)
quote
local iv = try Base.loaded_modules[Base.PkgId(Base.UUID("6e696c72-6542-2067-7265-42206c756150"), "AbstractPlutoDingetjes")].Bonds.initial_value catch; b -> missing; end
local el = $(esc(element))
global $(esc(def)) = Core.applicable(Base.get, el) ? Base.get(el) : iv(el)
el
end
end
# ╔═╡ 2bc86db6-f71a-11ed-1da5-fde04331397a
begin
# The code in this notebook depend on unregistered packages,
# so we disable automatic package management in Pluto and use a custom environment
using Pkg
Pkg.activate(joinpath(@__DIR__, "wannier_env"))
Pkg.instantiate()
using AtomsIO
using LazyArtifacts
using DFTK
using PlutoUI
using PlutoPlotly
using Plots
using SpecialFunctions
using Unitful
using UnitfulAtomic
using Wannier
import WannierPlots
end
# ╔═╡ b0e511c4-1fbc-42b5-9a25-030a28fe022f
LocalResource("Logos.png")
# ╔═╡ 3ec2ef1b-5edc-4510-a529-7ffb52dd8c8b
md"""
# Atomistic modelling ecosystem (2/4)
As an addendum to the previous DFTK notebook, we show here how [**DFTK**](https://dftk.org) plays nicely with the [**Wannier**](https://github.com/qiaojunfeng/Wannier.jl) Julia package for wannierisation, which has recently appeared.
!!! warning "Unstable interfaces"
This file shows a current working version of the DFTK <-> Wannier interface.
Names of functions and the overall API is preliminary and will likely change.
The [DFTK documentation](https://docs.dftk.org) and the [Wannier documentation](https://wannierjl.org) will feature a well-explained update example once the interface is ready.
We will go with a graphene system. Choose discretisation according to your CPU:
- Ecut (Hartree): $(@bind Ecut Slider(10:1.0:40; default=10, show_value=true))
- nkpoints: $(@bind nkpoints Slider(2:1:12; default=5, show_value=true))
- nbands: $(@bind nbands Slider(10:1:25; default=15, show_value=true))
"""
# ╔═╡ 19c9abdb-9e05-4b2e-8e07-39655cebca89
begin
d = 10u"Å" # Graphene sheet distance
a = 2.641u"Å" # Graphene lattice constant
lattice = [a -a/2 0;
0 √3*a/2 0;
0 0 d]
# Pseudo-Dojo standard pseudo for carbon
C = ElementPsp(:C, psp=load_psp(artifact"pd_nc_sr_pbe_standard_0.4.1_upf/C.upf"))
atoms = [C, C]
positions = [[0.0, 0.0, 0.0], [1//3, 2//3, 0.0]]
model = model_PBE(lattice, atoms, positions)
basis = PlaneWaveBasis(model; Ecut, kgrid=(nkpoints, nkpoints, 1))
nbandsalg = AdaptiveBands(basis.model; n_bands_converge=nbands)
scfres = self_consistent_field(basis; nbandsalg, tol=1e-5)
end;
# ╔═╡ 8b7d5f5a-3435-4a58-a381-4bf06bc84eb6
plot_bandstructure(scfres)
# ╔═╡ e9cc66d3-0fc5-4b6f-8321-95b31ec706fb
md"""
Now we use the `run_wannier` routine to perform the Wannierization procedure
using Wannier.jl. We first use SCDM to generate a better initial guess for the MLWFs.
Since this is an entangled case, we need a weight factor, for which we use an `erfc`
with parameters
- `σ` = $(@bind σ Scrubbable(1e-3 : 2e-3 : 2e-2; format=".3f", default=0.01)) Hartree
- `μ` = $(@bind μ Scrubbable(0 : 1e-3 : 1e-2; format=".3f", default=0.0)) Hartree
and construct `nwann = ` $(@bind nwann Slider(3 : 1 : nbands-4; default=5, show_value=true)) wannier functions:
"""
# ╔═╡ 89498877-ad4c-4d80-9661-54bf2ffafc4c
A = let
# Exclude non-converged bands
exclude_bands = DFTK._default_exclude_bands(scfres)
basis, ψ, eigenvalues = DFTK.unfold_scfres_wannier(scfres, exclude_bands)
function scdm_f(kpt::Kpoint)
ik = findfirst(Ref(kpt) .== basis.kpoints)
εk = eigenvalues[ik]
@. 0.5 * erfc((εk - μ) / σ)
end
# Builds and returns the A matrix
A = DFTK.compute_amn_scdm(basis, ψ, nwann, scdm_f)
end;
# ╔═╡ 5983120f-9b88-4795-b469-0752c7773efd
wann_model = only(
run_wannier(scfres;
fileprefix="wannier/graphene",
n_wann=nwann,
A,
dis_froz_max=0.1
)
)
# ╔═╡ c5b2f3ac-02f8-4363-a925-32c132a1a0e2
md"""
Now let's use Wannier functions to interpolate band structures, and compare with DFTK bands.
We first construct a `Wannier.InterpModel` specifically for Wannier interpolations. This lets us interpolate band structures using `Wannier.interpolate`, which returns a `Brillouin.KPathInterpolant` storing the kpoint coordinates on a kpath, and a matrix that contains eigenvalues.
"""
# ╔═╡ 29a426dd-34dd-4463-943d-1f01554cdc6e
begin
interp_model = Wannier.InterpModel(wann_model)
kinter, bands_wann = Wannier.interpolate(interp_model)
end
# ╔═╡ aef8f91e-ff76-4420-8103-03b1a59f8403
md"""
The `Brillouin.KPathInterpolant` is also understood by DFTK, which we can leverage to compute the exact DFT band energies.
"""
# ╔═╡ 704fa624-ffd8-431b-a6cb-e2f41fce0e9b
dftk_bands = DFTK.compute_bands(scfres.basis, kinter; scfres.ρ);
# ╔═╡ a5250227-de3a-4f80-b114-45633107dbe5
md"""
Since DFTK uses atomic units, but `Wannier.interpolate` is hard-coded to electron volts, we also convert the DFTK data to `eV` and finally compare the two band structures.
"""
# ╔═╡ e02c8fc7-fb01-460d-a3b8-23c2045f6666
begin
to_eV(x) = ustrip(auconvert(u"eV", x))
bands_dftk = to_eV.(hcat(dftk_bands.λ...))
fermi_energy = to_eV(scfres.εF)
end;
# ╔═╡ d2ba1b6b-e51c-4779-8dae-c6e390f2adfa
# wrap plot function so it works in Pluto notebook
PlutoPlot(
WannierPlots.plot_band_diff(kinter, bands_dftk, bands_wann; fermi_energy).plot
)
# ╔═╡ Cell order:
# ╠═2bc86db6-f71a-11ed-1da5-fde04331397a
# ╠═b0e511c4-1fbc-42b5-9a25-030a28fe022f
# ╟─3ec2ef1b-5edc-4510-a529-7ffb52dd8c8b
# ╠═19c9abdb-9e05-4b2e-8e07-39655cebca89
# ╠═8b7d5f5a-3435-4a58-a381-4bf06bc84eb6
# ╟─e9cc66d3-0fc5-4b6f-8321-95b31ec706fb
# ╠═89498877-ad4c-4d80-9661-54bf2ffafc4c
# ╠═5983120f-9b88-4795-b469-0752c7773efd
# ╟─c5b2f3ac-02f8-4363-a925-32c132a1a0e2
# ╠═29a426dd-34dd-4463-943d-1f01554cdc6e
# ╟─aef8f91e-ff76-4420-8103-03b1a59f8403
# ╠═704fa624-ffd8-431b-a6cb-e2f41fce0e9b
# ╟─a5250227-de3a-4f80-b114-45633107dbe5
# ╠═e02c8fc7-fb01-460d-a3b8-23c2045f6666
# ╠═d2ba1b6b-e51c-4779-8dae-c6e390f2adfa