-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathpcm-power.cpp
523 lines (465 loc) · 24.2 KB
/
pcm-power.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
/*
Copyright (c) 2009-2014, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
// written by Roman Dementiev
// added PPD cycles by Thomas Willhalm
#define HACK_TO_REMOVE_DUPLICATE_ERROR
#include "cpucounters.h"
#ifdef _MSC_VER
#pragma warning(disable : 4996) // for sprintf
#include <windows.h>
#include "../PCM_Win/windriver.h"
#else
#include <unistd.h>
#include <signal.h>
#include <sys/time.h> // for gettimeofday()
#endif
#include <iostream>
#include <stdlib.h>
#include <iomanip>
#ifdef _MSC_VER
#include "freegetopt/getopt.h"
#endif
#include "utils.h"
#define PCM_DELAY_DEFAULT 1.0 // in seconds
#define PCM_DELAY_MIN 0.015 // 15 milliseconds is practical on most modern CPUs
#define PCM_CALIBRATION_INTERVAL 50 // calibrate clock only every 50th iteration
using namespace std;
int getFirstRank(int imc_profile)
{
return imc_profile*2;
}
int getSecondRank(int imc_profile)
{
return (imc_profile*2)+1;
}
double getCKEOffResidency(uint32 channel, uint32 rank, const ServerUncorePowerState & before, const ServerUncorePowerState & after)
{
return double(getMCCounter(channel,(rank&1)?2:0,before,after))/double(getDRAMClocks(channel,before,after));
}
int64 getCKEOffAverageCycles(uint32 channel, uint32 rank, const ServerUncorePowerState & before, const ServerUncorePowerState & after)
{
uint64 div = getMCCounter(channel,(rank&1)?3:1,before,after);
if(div)
return getMCCounter(channel,(rank&1)?2:0,before,after)/div;
return -1;
}
int64 getCyclesPerTransition(uint32 channel, uint32 rank, const ServerUncorePowerState & before, const ServerUncorePowerState & after)
{
uint64 div = getMCCounter(channel,(rank&1)?3:1,before,after);
if(div)
return getDRAMClocks(channel,before,after)/div;
return -1;
}
uint64 getSelfRefreshCycles(uint32 channel, const ServerUncorePowerState & before, const ServerUncorePowerState & after)
{
return getMCCounter(channel,0,before,after);
}
uint64 getSelfRefreshTransitions(uint32 channel, const ServerUncorePowerState & before, const ServerUncorePowerState & after)
{
return getMCCounter(channel,1,before,after);
}
uint64 getPPDCycles(uint32 channel, const ServerUncorePowerState & before, const ServerUncorePowerState & after)
{
return getMCCounter(channel,2,before,after);
}
double getNormalizedPCUCounter(uint32 counter, const ServerUncorePowerState & before, const ServerUncorePowerState & after)
{
return double(getPCUCounter(counter, before, after))/double(getPCUClocks(before,after));
}
double getNormalizedPCUCounter(uint32 counter, const ServerUncorePowerState & before, const ServerUncorePowerState & after, PCM * m)
{
const uint64 PCUClocks = (m->getPCUFrequency()*getInvariantTSC(before, after))/m->getNominalFrequency();
//std::cout << "PCM Debug: PCU clocks "<< PCUClocks << std::endl;
return double(getPCUCounter(counter, before, after))/double(PCUClocks);
}
int default_freq_band[3] = {12,20,40};
int freq_band[3];
void print_usage(const string progname)
{
cerr << endl << " Usage: " << endl << " " << progname
<< " --help | [delay] [options] [-- external_program [external_program_options]]" << endl;
cerr << " <delay> => time interval to sample performance counters." << endl;
cerr << " If not specified, or 0, with external program given" << endl;
cerr << " will read counters only after external program finishes" << endl;
cerr << " Supported <options> are: " << endl;
cerr << " -h | --help | /h => print this help and exit" << endl;
// cerr << " -csv[=file.csv] | /csv[=file.csv] => output compact CSV format to screen or" << endl
// << " to a file, in case filename is provided" << endl;
cerr << " [-m imc_profile] [-p pcu_profile] [-a freq_band0] [-b freq_band1] [-c freq_band2]" << endl << endl;
cerr << " Where: imc_profile, pcu_profile, freq_band0, freq_band1 and freq_band2 are the following:" << endl;
cerr << " <imc_profile> - profile (counter group) for IMC PMU. Possible values are: 0,1,2,3,4,-1 \n";
cerr << " profile 0 - rank 0 and rank 1 residencies (default) \n";
cerr << " profile 1 - rank 2 and rank 3 residencies \n";
cerr << " profile 2 - rank 4 and rank 5 residencies \n";
cerr << " profile 3 - rank 6 and rank 7 residencies \n";
cerr << " profile 4 - self-refresh residencies \n";
cerr << " profile -1 - omit IMC PMU output\n";
cerr << " <pcu_profile> - profile (counter group) for PCU PMU. Possible values are: 0,1,2,3,4,5,-1 \n";
cerr << " profile 0 - frequency residencies (default) \n";
cerr << " profile 1 - core C-state residencies. The unit is the number of physical cores on the socket who were in C0, C3 or C6 during the measurement interval (e.g. 'C0 residency is 3.5' means on average 3.5 physical cores were resident in C0 state)\n";
cerr << " profile 2 - Prochot (throttled) residencies and thermal frequency limit cycles \n";
cerr << " profile 3 - {Thermal,Power,Clipped} frequency limit cycles \n";
cerr << " profile 4 - {OS,Power,Clipped} frequency limit cycles \n";
cerr << " profile 5 - frequency transition statistics \n";
cerr << " profile 6 - package C-states residency and transition statistics \n";
cerr << " profile 7 - UFS transition statistics (1) \n";
cerr << " profile 8 - UFS transition statistics (2) \n";
cerr << " profile -1 - omit PCU PMU output\n";
cerr << " <freq_band0> - frequency minumum for band 0 for PCU frequency residency profile [in 100MHz units] (default is "<<
default_freq_band[0] <<"= "<< 100*default_freq_band[0] <<"MHz)\n";
cerr << " <freq_band1> - frequency minumum for band 1 for PCU frequency residency profile [in 100MHz units] (default is "<<
default_freq_band[1] <<"= "<< 100*default_freq_band[1]<<"MHz)\n";
cerr << " <freq_band2> - frequency minumum for band 2 for PCU frequency residency profile [in 100MHz units] (default is "<<
default_freq_band[2] <<"= "<< 100*default_freq_band[2]<<"MHz)\n";
cerr << endl;
}
int main(int argc, char * argv[])
{
set_signal_handlers();
std::cerr << "\n Intel(r) Performance Counter Monitor " << INTEL_PCM_VERSION << std::endl;
std::cerr << "\n Power Monitoring Utility\n";
std::cerr << INTEL_PCM_COPYRIGHT << std::endl;
int imc_profile = 0;
int pcu_profile = 0;
double delay = -1.0;
char *sysCmd = NULL;
char **sysArgv = NULL;
freq_band[0] = default_freq_band[0];
freq_band[1] = default_freq_band[1];
freq_band[2] = default_freq_band[2];
bool csv = false;
long diff_usec = 0; // deviation of clock is useconds between measurements
int calibrated = PCM_CALIBRATION_INTERVAL - 2; // keeps track is the clock calibration needed
string program = string(argv[0]);
PCM * m = PCM::getInstance();
if(argc > 1) do
{
argv++;
argc--;
if (strncmp(*argv, "--help", 6) == 0 ||
strncmp(*argv, "-h", 2) == 0 ||
strncmp(*argv, "/h", 2) == 0)
{
print_usage(program);
exit(EXIT_FAILURE);
}
else
if (strncmp(*argv, "-csv",4) == 0 ||
strncmp(*argv, "/csv",4) == 0)
{
csv = true;
string cmd = string(*argv);
size_t found = cmd.find('=',4);
if (found != string::npos) {
string filename = cmd.substr(found+1);
if (!filename.empty()) {
m->setOutput(filename);
}
}
continue;
}
else
if (strncmp(*argv, "-m",2) == 0)
{
argv++;
argc--;
imc_profile = atoi(*argv);
continue;
}
else
if (strncmp(*argv, "-p",2) == 0)
{
argv++;
argc--;
pcu_profile = atoi(*argv);
continue;
}
else
if (strncmp(*argv, "-a",2) == 0)
{
argv++;
argc--;
freq_band[0] = atoi(*argv);
continue;
}
else
if (strncmp(*argv, "-b",2) == 0)
{
argv++;
argc--;
freq_band[1] = atoi(*argv);
continue;
}
else
if (strncmp(*argv, "-c",2) == 0)
{
argv++;
argc--;
freq_band[2] = atoi(*argv);
continue;
}
else
if (strncmp(*argv, "--", 2) == 0)
{
argv++;
sysCmd = *argv;
sysArgv = argv;
break;
}
else
{
// any other options positional that is a floating point number is treated as <delay>,
// while the other options are ignored with a warning issues to stderr
double delay_input;
std::istringstream is_str_stream(*argv);
is_str_stream >> noskipws >> delay_input;
if(is_str_stream.eof() && !is_str_stream.fail()) {
delay = delay_input;
} else {
cerr << "WARNING: unknown command-line option: \"" << *argv << "\". Ignoring it." << endl;
print_usage(program);
exit(EXIT_FAILURE);
}
continue;
}
} while(argc > 1); // end of command line partsing loop
m->disableJKTWorkaround();
const int cpu_model = m->getCPUModel();
if(!(m->hasPCICFGUncore()))
{
std::cerr <<"Unsupported processor model ("<<cpu_model<<")."<< std::endl;
exit(EXIT_FAILURE);
}
if(PCM::Success != m->programServerUncorePowerMetrics(imc_profile,pcu_profile,freq_band))
{
#ifdef _MSC_VER
std::cerr << "You must have signed msr.sys driver in your current directory and have administrator rights to run this program" << std::endl;
#elif defined(__linux__)
std::cerr << "You need to be root and loaded 'msr' Linux kernel module to execute the program. You may load the 'msr' module with 'modprobe msr'. \n";
#endif
exit(EXIT_FAILURE);
}
ServerUncorePowerState * BeforeState = new ServerUncorePowerState[m->getNumSockets()];
ServerUncorePowerState * AfterState = new ServerUncorePowerState[m->getNumSockets()];
uint64 BeforeTime = 0, AfterTime = 0;
std::cerr << std::dec << std::endl;
std::cerr.precision(2);
std::cerr << std::fixed;
std::cout << std::dec << std::endl;
std::cout.precision(2);
std::cout << std::fixed;
std::cerr << "\nMC counter group: "<<imc_profile << std::endl;
std::cerr << "PCU counter group: "<<pcu_profile << std::endl;
if (pcu_profile == 0) {
if (cpu_model == PCM::HASWELLX || cpu_model == PCM::BDX_DE)
std::cerr << "Your processor does not support frequency band statistics" << std::endl;
else
std::cerr << "Freq bands [0/1/2]: " << freq_band[0] * 100 << " MHz; " << freq_band[1] * 100 << " MHz; " << freq_band[2] * 100 << " MHz; " << std::endl;
}
if(sysCmd != NULL)
std::cerr << "Update every "<<delay<<" seconds"<< std::endl;
if ( (sysCmd != NULL) && (delay<=0.0) ) {
// in case external command is provided in command line, and
// delay either not provided (-1) or is zero
m->setBlocked(true);
} else {
m->setBlocked(false);
}
if( ((delay<1.0) && (delay>0.0)) || (delay<=0.0) ) delay = PCM_DELAY_DEFAULT;
uint32 i = 0;
for(i=0; i<m->getNumSockets(); ++i)
BeforeState[i] = m->getServerUncorePowerState(i);
BeforeTime = m->getTickCount();
if( sysCmd != NULL ) {
MySystem(sysCmd, sysArgv);
}
while(1)
{
std::cout << "----------------------------------------------------------------------------------------------"<<std::endl;
if(!csv) cout << std::flush;
int delay_ms = int(delay * 1000);
int calibrated_delay_ms = delay_ms;
#ifdef _MSC_VER
// compensate slow Windows console output
if(AfterTime) delay_ms -= (int)(m->getTickCount() - BeforeTime);
if(delay_ms < 0) delay_ms = 0;
#else
// compensation of delay on Linux/UNIX
// to make the samling interval as monotone as possible
struct timeval start_ts, end_ts;
if(calibrated == 0) {
gettimeofday(&end_ts, NULL);
diff_usec = (end_ts.tv_sec-start_ts.tv_sec)*1000000.0+(end_ts.tv_usec-start_ts.tv_usec);
calibrated_delay_ms = delay_ms - diff_usec/1000.0;
}
#endif
MySleepMs(calibrated_delay_ms);
#ifndef _MSC_VER
calibrated = (calibrated + 1) % PCM_CALIBRATION_INTERVAL;
if(calibrated == 0) {
gettimeofday(&start_ts, NULL);
}
#endif
AfterTime = m->getTickCount();
for(i=0; i<m->getNumSockets(); ++i)
AfterState[i] = m->getServerUncorePowerState(i);
std::cout << "Time elapsed: "<<AfterTime-BeforeTime<<" ms\n";
std::cout << "Called sleep function for "<<delay_ms<<" ms\n";
for(uint32 socket=0;socket<m->getNumSockets();++socket)
{
for(uint32 port=0;port<m->getQPILinksPerSocket();++port)
{
std::cout << "S"<<socket<<"P"<<port
<< "; QPIClocks: "<< getQPIClocks(port,BeforeState[socket],AfterState[socket])
<< "; L0p Tx Cycles: "<< 100.*getNormalizedQPIL0pTxCycles(port,BeforeState[socket],AfterState[socket])<< "%"
<< "; L1 Cycles: " << 100.*getNormalizedQPIL1Cycles(port,BeforeState[socket],AfterState[socket])<< "%"
<< "\n";
}
for(uint32 channel=0;channel<m->getMCChannelsPerSocket();++channel)
{
if(imc_profile <= 3 && imc_profile >= 0)
{
std::cout << "S"<<socket<<"CH"<<channel <<"; DRAMClocks: "<< getDRAMClocks(channel,BeforeState[socket],AfterState[socket])
<< "; Rank"<<getFirstRank(imc_profile)<<" CKE Off Residency: "<< std::setw(3) <<
100.*getCKEOffResidency(channel,getFirstRank(imc_profile),BeforeState[socket],AfterState[socket])<<"%"
<< "; Rank"<<getFirstRank(imc_profile)<<" CKE Off Average Cycles: "<<
getCKEOffAverageCycles(channel,getFirstRank(imc_profile),BeforeState[socket],AfterState[socket])
<< "; Rank"<<getFirstRank(imc_profile)<<" Cycles per transition: "<<
getCyclesPerTransition(channel,getFirstRank(imc_profile),BeforeState[socket],AfterState[socket])
<< "\n";
std::cout << "S"<<socket<<"CH"<<channel <<"; DRAMClocks: "<< getDRAMClocks(channel,BeforeState[socket],AfterState[socket])
<< "; Rank"<<getSecondRank(imc_profile)<<" CKE Off Residency: "<< std::setw(3) <<
100.*getCKEOffResidency(channel,getSecondRank(imc_profile),BeforeState[socket],AfterState[socket])<<"%"
<< "; Rank"<<getSecondRank(imc_profile)<<" CKE Off Average Cycles: "<<
getCKEOffAverageCycles(channel,getSecondRank(imc_profile),BeforeState[socket],AfterState[socket])
<< "; Rank"<<getSecondRank(imc_profile)<<" Cycles per transition: "<<
getCyclesPerTransition(channel,getSecondRank(imc_profile),BeforeState[socket],AfterState[socket])
<< "\n";
} else if(imc_profile == 4)
{
std::cout << "S"<<socket<<"CH"<<channel
<< "; DRAMClocks: "<< getDRAMClocks(channel,BeforeState[socket],AfterState[socket])
<< "; Self-refresh cycles: "<< getSelfRefreshCycles(channel,BeforeState[socket],AfterState[socket])
<< "; Self-refresh transitions: "<< getSelfRefreshTransitions(channel,BeforeState[socket],AfterState[socket])
<< "; PPD cycles: "<< getPPDCycles(channel,BeforeState[socket],AfterState[socket])
<< "\n";
}
}
switch(pcu_profile)
{
case 0:
if (cpu_model == PCM::HASWELLX || cpu_model == PCM::BDX_DE)
break;
std::cout << "S"<<socket
<< "; PCUClocks: "<< getPCUClocks(BeforeState[socket],AfterState[socket])
<< "; Freq band 0/1/2 cycles: "<< 100.*getNormalizedPCUCounter(1,BeforeState[socket],AfterState[socket])<<"%"
<< "; "<< 100.*getNormalizedPCUCounter(2,BeforeState[socket],AfterState[socket])<<"%"
<< "; "<< 100.*getNormalizedPCUCounter(3,BeforeState[socket],AfterState[socket])<<"%"
<< "\n";
break;
case 1:
std::cout << "S"<<socket
<< "; PCUClocks: "<< getPCUClocks(BeforeState[socket],AfterState[socket])
<< "; core C0/C3/C6-state residency: "<< getNormalizedPCUCounter(1,BeforeState[socket],AfterState[socket])
<< "; "<< getNormalizedPCUCounter(2,BeforeState[socket],AfterState[socket])
<< "; "<< getNormalizedPCUCounter(3,BeforeState[socket],AfterState[socket])
<< "\n";
break;
case 2:
std::cout << "S"<<socket
<< "; PCUClocks: "<< getPCUClocks(BeforeState[socket],AfterState[socket])
<< "; Internal prochot cycles: "<< getNormalizedPCUCounter(1,BeforeState[socket],AfterState[socket])*100. <<" %"
<< "; External prochot cycles:" << getNormalizedPCUCounter(2,BeforeState[socket],AfterState[socket])*100. <<" %"
<< "; Thermal freq limit cycles:" << getNormalizedPCUCounter(3,BeforeState[socket],AfterState[socket])*100. <<" %"
<< "\n";
break;
case 3:
std::cout << "S"<<socket
<< "; PCUClocks: "<< getPCUClocks(BeforeState[socket],AfterState[socket])
<< "; Thermal freq limit cycles: "<< getNormalizedPCUCounter(1,BeforeState[socket],AfterState[socket])*100. <<" %"
<< "; Power freq limit cycles:" << getNormalizedPCUCounter(2,BeforeState[socket],AfterState[socket])*100. <<" %"
<< "; Clipped freq limit cycles:" << getNormalizedPCUCounter(3,BeforeState[socket],AfterState[socket])*100. <<" %"
<< "\n";
break;
case 4:
std::cout << "S"<<socket
<< "; PCUClocks: "<< getPCUClocks(BeforeState[socket],AfterState[socket])
<< "; OS freq limit cycles: "<< getNormalizedPCUCounter(1,BeforeState[socket],AfterState[socket])*100. <<" %"
<< "; Power freq limit cycles:" << getNormalizedPCUCounter(2,BeforeState[socket],AfterState[socket])*100. <<" %"
<< "; Clipped freq limit cycles:" << getNormalizedPCUCounter(3,BeforeState[socket],AfterState[socket])*100. <<" %"
<< "\n";
break;
case 5:
std::cout << "S"<<socket
<< "; Frequency transition count: "<< getPCUCounter(1,BeforeState[socket],AfterState[socket]) <<" "
<< "; Cycles spent changing frequency: " << getNormalizedPCUCounter(2,BeforeState[socket],AfterState[socket], m)*100. <<" %";
if(PCM::HASWELLX == cpu_model) {
std::cout << "; UFS transition count: "<< getPCUCounter(3,BeforeState[socket],AfterState[socket]) <<" ";
std::cout << "; UFS transition cycles: " << getNormalizedPCUCounter(0,BeforeState[socket],AfterState[socket], m)*100. <<" %";
}
std::cout << "\n";
break;
case 6:
std::cout << "S"<<socket ;
if(cpu_model == PCM::HASWELLX || PCM::BDX_DE == cpu_model)
std::cout << "; PC1e+ residency: "<< getNormalizedPCUCounter(0,BeforeState[socket],AfterState[socket], m)*100. <<" %"
"; PC1e+ transition count: "<< getPCUCounter(1,BeforeState[socket],AfterState[socket]) <<" ";
if(cpu_model == PCM::IVYTOWN || cpu_model == PCM::HASWELLX || PCM::BDX_DE == cpu_model)
{
std::cout << "; PC2 residency: "<< getPackageCStateResidency(2,BeforeState[socket],AfterState[socket])*100. <<" %";
std::cout << "; PC2 transitions: "<< getPCUCounter(2,BeforeState[socket],AfterState[socket]) <<" ";
std::cout << "; PC3 residency: "<< getPackageCStateResidency(3,BeforeState[socket],AfterState[socket])*100. <<" %";
std::cout << "; PC6 residency: "<< getPackageCStateResidency(6,BeforeState[socket],AfterState[socket])*100. <<" %";
std::cout << "; PC6 transitions: "<< getPCUCounter(3,BeforeState[socket],AfterState[socket]) <<" ";
}
std::cout << "\n";
break;
case 7:
if(PCM::HASWELLX == cpu_model || PCM::BDX_DE == cpu_model) {
std::cout << "S"<<socket
<< "; UFS_TRANSITIONS_PERF_P_LIMIT: "<< getNormalizedPCUCounter(0,BeforeState[socket],AfterState[socket], m)*100. <<" %"
<< "; UFS_TRANSITIONS_IO_P_LIMIT: " << getNormalizedPCUCounter(1,BeforeState[socket],AfterState[socket], m)*100. <<" %"
<< "; UFS_TRANSITIONS_UP_RING_TRAFFIC: "<< getNormalizedPCUCounter(2,BeforeState[socket],AfterState[socket], m)*100. <<" %"
<< "; UFS_TRANSITIONS_UP_STALL_CYCLES: " << getNormalizedPCUCounter(3,BeforeState[socket],AfterState[socket], m)*100. <<" %"
<< "\n";
}
break;
case 8:
if(PCM::HASWELLX == cpu_model || PCM::BDX_DE == cpu_model) {
std::cout << "S"<<socket
<< "; UFS_TRANSITIONS_DOWN: "<< getNormalizedPCUCounter(0,BeforeState[socket],AfterState[socket], m)*100. <<" %"
<< "\n";
}
break;
}
std::cout << "S"<<socket
<< "; Consumed energy units: "<< getConsumedEnergy(BeforeState[socket],AfterState[socket])
<< "; Consumed Joules: "<< getConsumedJoules(BeforeState[socket],AfterState[socket])
<< "; Watts: "<< 1000.*getConsumedJoules(BeforeState[socket],AfterState[socket])/double(AfterTime-BeforeTime)
<< "; Thermal headroom below TjMax: " << AfterState[socket].getPackageThermalHeadroom()
<< "\n";
std::cout << "S"<<socket
<< "; Consumed DRAM energy units: "<< getDRAMConsumedEnergy(BeforeState[socket],AfterState[socket])
<< "; Consumed DRAM Joules: "<< getDRAMConsumedJoules(BeforeState[socket],AfterState[socket])
<< "; DRAM Watts: "<< 1000.*getDRAMConsumedJoules(BeforeState[socket],AfterState[socket])/double(AfterTime-BeforeTime)
<< "\n";
}
std::swap(BeforeState,AfterState);
std::swap(BeforeTime,AfterTime);
if ( m->isBlocked() ) {
std::cout << "----------------------------------------------------------------------------------------------"<<std::endl;
// in case PCM was blocked after spawning child application: break monitoring loop here
break;
}
}
delete [] BeforeState;
delete [] AfterState;
exit(EXIT_SUCCESS);
}