-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinterpretability.py
104 lines (87 loc) · 3.67 KB
/
interpretability.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import os
import glob
import copy
import cv2
from tqdm import tqdm
import numpy as np
import skimage.segmentation
import sklearn.metrics
from sklearn.linear_model import LinearRegression
import tensorflow as tf
import utils
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1'
class LIME(object):
def __init__(self, model, areas=20, perturbations=700, **kwargs):
self.model = model
self.perturbations = perturbations
self.areas = areas
self.kernel_width = 0.25
def create_perturbations(self, img, i, segments, create_visualization=False):
active_pixels = np.where(i == 1)[0]
mask = np.zeros(segments.shape)
for act in active_pixels:
mask[segments == act] = 1
perturbed_img = copy.deepcopy(img)
if create_visualization:
mask = mask.astype(np.float32)
mask = mask[..., None]
mask = np.concatenate((mask, mask, mask), axis=2)
mask *= 0.2
green_mark = np.ones(perturbed_img.shape, dtype=np.float32) * (0, 1, 0)
perturbed_img = green_mark * mask + perturbed_img * (1.0 - mask)
else:
perturbed_img = perturbed_img * mask[:, :, np.newaxis]
return perturbed_img
def fit_linear_model(self, img, label):
self.model.trainable = False
img = standardize_sample(img)
super_pixels = skimage.segmentation.quickshift(img, kernel_size=2, ratio=0.1, max_dist=1000)
num_super_pixels = np.unique(super_pixels).shape[0]
perturbations = np.random.binomial(1, 0.5, size=(self.perturbations, num_super_pixels))
preds = []
for pert in tqdm(perturbations):
pert = self.create_perturbations(img, pert, super_pixels)
predictions = self.model(tf.cast([pert], tf.float32))
preds.append(predictions.numpy()[0])
preds = np.array(preds)
initial_image = np.ones(num_super_pixels)[np.newaxis, :]
distances = sklearn.metrics.pairwise_distances(perturbations, initial_image, metric='cosine').ravel()
weights = np.sqrt(np.exp(-(distances ** 2) / self.kernel_width ** 2))
y = preds[:, label] # remove one hot
linear_model = LinearRegression()
linear_model.fit(X=perturbations, y=y, sample_weight=weights)
coef = linear_model.coef_
top_super_pixels = np.argsort(coef)[-self.areas:]
mask = np.zeros(num_super_pixels)
mask[top_super_pixels] = True
explainer = self.create_perturbations(img, mask, super_pixels, create_visualization=True)
return explainer, mask, super_pixels
def prep_eval_data(prep_fns):
prep = []
for fn in tqdm(prep_fns):
img = utils.imread(fn)
img = cv2.resize(img, (136, 136), interpolation=cv2.INTER_CUBIC)
prep.append(img)
return prep
def standardize_sample(img):
mean = np.mean(img)
n = len(img.ravel())
adjusted_stddev = max(np.std(img), 1.0 / np.sqrt(n))
return (img-mean)/adjusted_stddev
def show(img):
import matplotlib.pyplot as plt
plt.imshow(img, cmap='gray')
plt.show()
if __name__ == '__main__':
utils.setup_gpus()
dme = glob.glob('/media/miguel/ALICIUM/Miguel/DOWNLOADS/ZhangLabData/CellData/OCT/test/DME/*')
data = prep_eval_data(dme)
img = data[10]
modelname = '20201011_vanilla_cnn_batch64'
model_path = os.path.join('./trained_models', modelname, 'frozen')
model = tf.keras.models.load_model(model_path)
explainer = LIME(model, areas=7, perturbations=700)
ex, mask, super_pix = explainer.fit_linear_model(img, label=2)
super_pix = skimage.segmentation.mark_boundaries(img, super_pix)
full_image = np.concatenate((ex, super_pix), axis=1)
show(full_image)