forked from abrasive/shairport
-
-
Notifications
You must be signed in to change notification settings - Fork 580
/
ptp-utilities.c
265 lines (243 loc) · 9.15 KB
/
ptp-utilities.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
/*
* This file is part of Shairport Sync.
* Copyright (c) Mike Brady 2020 -- 2023
* All rights reserved.
*
* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation
* files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use,
* copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include "definitions.h"
#include <arpa/inet.h>
#include <errno.h>
#include <fcntl.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#ifdef COMPILE_FOR_FREEBSD
#include <netinet/in.h>
#endif
#include <sys/socket.h>
#include <sys/types.h>
#include <netdb.h>
#define __STDC_FORMAT_MACROS
#include "common.h"
#include "ptp-utilities.h"
#include <inttypes.h>
#include <unistd.h>
int shm_fd;
void *mapped_addr = NULL;
// returns a copy of the shared memory data from the nqptp
// shared memory interface, so long as it's open.
int get_nqptp_data(struct shm_structure *nqptp_data) {
// uint64_t tn = get_absolute_time_in_ns(); // if interested in timing the function...
struct shm_structure local_nqptp_data;
int response = -1; // presume the worst. Fix it on success
// We need to ensure that when we read the record, we are not reading it while it is partly
// updated and therefore inconsistent. To achieve this, we do the following:
// We ensure that the secondary record is written by NQPTP _strictly after_
// all writes to the main record are complete.
// Here we read two copies of the entire record, the second
// _strictly after_ all reads from the first are complete.
// (Strict write and read ordering is ensured using the __sync_synchronize() construct.)
// We then compare the main record in the first read to the
// secondary record in the second read.
// If they are equal, we can be sure we have not read a record that has been
// made inconsistent by an interrupted update.
if ((mapped_addr != MAP_FAILED) && (mapped_addr != NULL)) {
int loop_count = 1;
do {
__sync_synchronize();
memcpy(nqptp_data, (char *)mapped_addr, sizeof(struct shm_structure));
__sync_synchronize();
// read again strictly after a full read -- this is to read the secondary strictly after the
// primary
memcpy(&local_nqptp_data, (char *)mapped_addr, sizeof(struct shm_structure));
// check that the main and secondary data sets match
if (memcmp(&nqptp_data->main, &local_nqptp_data.secondary, sizeof(shm_structure_set)) != 0) {
usleep(2); // microseconds
loop_count++;
}
} while (
(memcmp(&nqptp_data->main, &local_nqptp_data.secondary, sizeof(shm_structure_set)) != 0) &&
(loop_count < 10));
if (loop_count == 10) {
debug(1, "get_nqptp_data -- main and secondary records don't match after %d attempts!",
loop_count);
response = -1;
} else {
response = 0;
}
} else {
if (mapped_addr == NULL)
debug(1, "get_nqptp_data failed because the mapped_addr is NULL");
else if (mapped_addr == MAP_FAILED)
debug(1, "get_nqptp_data failed because the mapped_addr is MAP_FAILED");
else
debug(1, "get_nqptp_data failed");
}
// int64_t et = get_absolute_time_in_ns() - tn;
// debug(1, "get_nqptp_data time: %.3f microseconds.", 0.001 * et);
return response;
}
int ptp_get_clock_version() {
int response = 0; // no version number information available
struct shm_structure nqptp_data;
if (get_nqptp_data(&nqptp_data) == 0) {
response = nqptp_data.version;
}
return response;
}
int ptp_get_clock_info(uint64_t *actual_clock_id, uint64_t *time_of_sample, uint64_t *raw_offset,
uint64_t *mastership_start_time) {
int response = clock_ok;
if (actual_clock_id != NULL)
*actual_clock_id = 0;
if (raw_offset != NULL)
*raw_offset = 0;
if (time_of_sample != NULL)
*time_of_sample = 0;
if (mastership_start_time != NULL)
*mastership_start_time = 0;
// if (ptp_shm_interface_open() == 0) {
struct shm_structure nqptp_data;
if (get_nqptp_data(&nqptp_data) == 0) {
if (nqptp_data.version == NQPTP_SHM_STRUCTURES_VERSION) {
// assuming a clock id can not be zero
if (nqptp_data.main.master_clock_id != 0) {
if (actual_clock_id != NULL)
*actual_clock_id = nqptp_data.main.master_clock_id;
if (time_of_sample != NULL)
*time_of_sample = nqptp_data.main.local_time;
if (raw_offset != NULL)
*raw_offset = nqptp_data.main.local_to_master_time_offset;
if (mastership_start_time != NULL)
*mastership_start_time = nqptp_data.main.master_clock_start_time;
} else {
response = clock_no_master;
}
} else {
// the version can not be zero. If zero is returned here, it means that the shared memory is
// not yet initialised, so not availalbe
if (nqptp_data.version == 0)
response = clock_service_unavailable;
else
response = clock_version_mismatch;
}
} else {
response = clock_data_unavailable;
}
return response;
}
int ptp_shm_interface_open() {
int response = 0;
debug(2, "ptp_shm_interface_open with mapped_addr = %" PRIuPTR "", mapped_addr);
if ((mapped_addr == NULL) || (mapped_addr == MAP_FAILED)) {
response = -1;
if (mapped_addr == NULL)
debug(3, "ptp_shm_interface_open is NULL");
if (mapped_addr == MAP_FAILED)
debug(3, "ptp_shm_interface_open is MAP_FAILED");
if (strcmp(config.nqptp_shared_memory_interface_name, "") != 0) {
response = 0;
int shared_memory_file_descriptor =
shm_open(config.nqptp_shared_memory_interface_name, O_RDONLY, 0);
if (shared_memory_file_descriptor >= 0) {
mapped_addr =
// needs to be PROT_READ | PROT_WRITE to allow the mapped memory to be writable for the
// mutex to lock and unlock
mmap(NULL, sizeof(struct shm_structure), PROT_READ, MAP_SHARED,
shared_memory_file_descriptor, 0);
if (mapped_addr == MAP_FAILED) {
response = -1;
}
if (close(shared_memory_file_descriptor) == -1) {
response = -1;
}
} else {
response = -1;
}
} else {
debug(1, "No config.nqptp_shared_memory_interface_name");
}
if (response == 0)
debug(2, "ptp_shm_interface_open -- success!");
else
debug(2, "ptp_shm_interface_open -- fail!");
} else {
debug(2, "ptp_shm_interface_open -- already open!");
}
return response;
}
int ptp_shm_interface_close() {
int response = -1;
if ((mapped_addr != MAP_FAILED) && (mapped_addr != NULL)) {
debug(2, "ptp_shm_interface_close");
response = munmap(mapped_addr, sizeof(struct shm_structure));
if (response != 0)
debug(1, "error unmapping shared memory.");
}
mapped_addr = NULL;
return response;
}
void ptp_send_control_message_string(const char *msg) {
size_t full_message_size =
strlen(config.nqptp_shared_memory_interface_name) + strlen(" ") + strlen(msg) + 1;
char *full_message = malloc(full_message_size);
if (full_message != NULL) {
*full_message = '\0';
snprintf(full_message, full_message_size, "%s %s", config.nqptp_shared_memory_interface_name,
msg);
debug(2, "Send control message to NQPTP: \"%s\"", full_message);
int s;
int ret;
struct addrinfo hints, *info;
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_DGRAM;
hints.ai_flags = AI_PASSIVE;
/* nqptp is only controllable via localhost */
char portstr[20];
snprintf(portstr, 20, "%d", NQPTP_CONTROL_PORT);
ret = getaddrinfo("localhost", portstr, &hints, &info);
if (ret) {
die("getaddrinfo: %s", gai_strerror(ret));
}
/* Create a datagram socket in the internet domain and use the
* default protocol (UDP).
*/
if ((s = socket(info->ai_family, info->ai_socktype, 0)) < 0) {
die("Can't open a socket to NQPTP");
}
/* Send the message in buf to the server */
if (sendto(s, full_message, full_message_size, 0, info->ai_addr, info->ai_addrlen) <
0) {
die("error sending timing_peer_list to NQPTP");
}
/* Deallocate the socket */
close(s);
freeaddrinfo(info);
/* deallocate the message string */
free(full_message);
} else {
debug(1, "Couldn't allocate memory to prepare a qualified ptp control message string.");
}
}