Skip to content

Latest commit

 

History

History
142 lines (95 loc) · 5.24 KB

README.md

File metadata and controls

142 lines (95 loc) · 5.24 KB

TeleMelody

TeleMelody: Lyric-to-Melody Generation with a Template-Based Two-Stage Method, by Zeqian Ju, Peiling Lu, Xu Tan, Rui Wang, Chen Zhang, Songruoyao Wu, Kejun Zhang, Xiangyang Li, Tao Qin, Tie-Yan Liu, arXiv 2021, is a two-stage lyric-to-melody generation system with music template (e.g., tonality, chord progression, rhythm pattern, and cadence) to bridge the gap between lyrics and melodies. TeleMelody consists of a lyric-to-template module and a template-to-melody module, and generates melodies with higher quality, better controllability, and less requirement on paired lyric-melody data than previous generation systems.


Architecture of TeleMelody

1. Training

1.1 Lyric-to-Rhythm

(1) Prepare lyric-to-rhythm dataset. We provide several examples in directory data/en_example and data/zh_example. Due to potential copyright issues, we cannot share the training data, but you can follow the pipeline mentioned in our paper to get the training data.

(2) Train lyric-to-rhythm model.

cd training/lyric2rhythm/
bash train.sh data/example example 8192

(UPDATE: We provide our EN and ZH checkpoints , and corresponding dictionary in training/lyric2rhythm/dict.)

1.2 Template-to-Melody

(1) Prepare lmd-matched MIDI dataset.

cd training/template2melody/
wget http://hog.ee.columbia.edu/craffel/lmd/lmd_matched.tar.gz
tar -xzvf lmd_matched.tar.gz

(2) Generate training data and alignments.

python gen.py lmd_matched lmd_matched
python gen_align.py lmd_matched

(3) Train template-to-melody model.

bash preprocess.sh lmd_matched lmd_matched
bash train.sh lmd_matched

(UPDATE: Here we provide the template-to-melody model trained on lmd_matched dataset. )

2. Inference

2.1 Modify miditoolkit to support Chinese lyrics.

(1)

git clone https://github.com/YatingMusic/miditoolkit.git
cd miditoolkit

(2) Modify miditoolkit/midi/parser.py.

  raw:
   318    def dump(self,
   319              filename=None,
   320              file=None,
   321              segment=None,
   322              shift=True,
   323              instrument_idx=None):
   ...
   371 midi_parsed=mido.MidiFile(ticks_per_beat=self.ticks_per_beat)
  Modified:
   318    def dump(self,
   319              filename=None,
   320              file=None,
   321              segment=None,
   322              shift=True,
   323              instrument_idx=None,
   324              charset ='latin1'):
   ...
   372 midi_parsed=mido.MidiFile(ticks_per_beat=self.ticks_per_beat, charset=charset)

(3) Install miditoolkit.

pip uninstall miditoolkit
python setup.py install

2.2 Save checkpoints in checkpoints/{model_prefix} and dictionary in data-bin/{model_prefix}.

2.3 Prepare word-level (EN) or character-level (ZH) lyrics in data/{lang}/{data_prefix}/lyric.txt and chord progression in data/{lang}/{data_prefix}/chord.txt. For English lyrics, additionally prepare syllable-level lyrics in data/en/{data_prefix}/syllable.txt as the input of lyric-to-rhythm model. We provide examples in data/en/test/ and data/zh/test/.

2.4 Infer. Results are saved in directory results/{save_prefix}/midi/.

cd inference/
(EN):
python infer_en.py {en_lyric2rhythm_prefix} {template2melody_prefix} {en_data_prefix} {en_save_prefix}

(ZH):
python infer_zh.py {zh_lyric2rhythm_prefix} {template2melody_prefix} {zh_data_prefix} {zh_save_prefix}

UPDATE: we provide EN and ZH test set in test/. In test.melody, we use every two number (x, y) to represent a note, where 0 < x <129 is the pitch (128 if it is a rest note) and y > 128 is the duration (corresponds to y - 128 beats). test.chord is inferred through the algorithm proposed by Magenta.

3. Evaluation

3.1 PD & DD

Prepare generated melodies in {hyp_prefix}/{song_id}.mid and ground-truth melodies in {gt_prefix}/{song_id}.mid.

cd evaluation
python cal_similarity.py {gt_prefix} {hyp_prefix}

3.2 MD:

Prepare generated melodies in {hyp_prefix}/{song_id}.mid and ground-truth melodies in {gt_prefix}/{song_id}.mid.

python cal_dtw.py {gt_prefix} {hyp_prefix}

3.3 TA, CA, RA, AA

Prepare melody in {prefix}/test.hyp.txt and template in {prefix}/test.src.txt.

python cal_acc.py {prefix}

You can find demo samples by TeleMelody from https://ai-muzic.github.io/telemelody/.