-
Notifications
You must be signed in to change notification settings - Fork 73
/
Copy pathprocess_mimic.py
157 lines (138 loc) · 4.77 KB
/
process_mimic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# This script processes MIMIC-III dataset and builds longitudinal diagnosis records for patients with at least two visits.
# The output data are cPickled, and suitable for training Doctor AI or RETAIN
# Written by Edward Choi ([email protected])
# Usage: Put this script to the foler where MIMIC-III CSV files are located. Then execute the below command.
# python process_mimic.py ADMISSIONS.csv DIAGNOSES_ICD.csv <output file>
# Output files
# <output file>.seqs: Dataset that follows the format described in the README.md.
# <output file>.types: Python dictionary that maps string diagnosis codes to integer diagnosis codes.
# <output file>.3digitICD9.seqs: Dataset that follows the format described in the README.md. This uses only the first 3 digits of the ICD9 diagnosis code.
# <output file>.3digitICD9.types: Python dictionary that maps 3-digit string diagnosis codes to integer diagnosis codes.
import sys
import cPickle as pickle
from datetime import datetime
def convert_to_icd9(dxStr):
if dxStr.startswith('E'):
if len(dxStr) > 4: return dxStr[:4] + '.' + dxStr[4:]
else: return dxStr
else:
if len(dxStr) > 3: return dxStr[:3] + '.' + dxStr[3:]
else: return dxStr
def convert_to_3digit_icd9(dxStr):
if dxStr.startswith('E'):
if len(dxStr) > 4: return dxStr[:4]
else: return dxStr
else:
if len(dxStr) > 3: return dxStr[:3]
else: return dxStr
if __name__ == '__main__':
admissionFile = sys.argv[1]
diagnosisFile = sys.argv[2]
outFile = sys.argv[3]
print 'Building pid-admission mapping, admission-date mapping'
pidAdmMap = {}
admDateMap = {}
infd = open(admissionFile, 'r')
infd.readline()
for line in infd:
tokens = line.strip().split(',')
pid = int(tokens[1])
admId = int(tokens[2])
admTime = datetime.strptime(tokens[3], '%Y-%m-%d %H:%M:%S')
admDateMap[admId] = admTime
if pid in pidAdmMap: pidAdmMap[pid].append(admId)
else: pidAdmMap[pid] = [admId]
infd.close()
print 'Building admission-dxList mapping'
admDxMap = {}
admDxMap_3digit = {}
infd = open(diagnosisFile, 'r')
infd.readline()
for line in infd:
tokens = line.strip().split(',')
admId = int(tokens[2])
dxStr = 'D_' + convert_to_icd9(tokens[4][1:-1]) ############## Uncomment this line and comment the line below, if you want to use the entire ICD9 digits.
dxStr_3digit = 'D_' + convert_to_3digit_icd9(tokens[4][1:-1])
if admId in admDxMap:
admDxMap[admId].append(dxStr)
else:
admDxMap[admId] = [dxStr]
if admId in admDxMap_3digit:
admDxMap_3digit[admId].append(dxStr_3digit)
else:
admDxMap_3digit[admId] = [dxStr_3digit]
infd.close()
print 'Building pid-sortedVisits mapping'
pidSeqMap = {}
pidSeqMap_3digit = {}
for pid, admIdList in pidAdmMap.iteritems():
if len(admIdList) < 2: continue
sortedList = sorted([(admDateMap[admId], admDxMap[admId]) for admId in admIdList])
pidSeqMap[pid] = sortedList
sortedList_3digit = sorted([(admDateMap[admId], admDxMap_3digit[admId]) for admId in admIdList])
pidSeqMap_3digit[pid] = sortedList_3digit
print 'Building pids, dates, strSeqs'
pids = []
dates = []
seqs = []
for pid, visits in pidSeqMap.iteritems():
pids.append(pid)
seq = []
date = []
for visit in visits:
date.append(visit[0])
seq.append(visit[1])
dates.append(date)
seqs.append(seq)
print 'Building pids, dates, strSeqs for 3digit ICD9 code'
seqs_3digit = []
for pid, visits in pidSeqMap_3digit.iteritems():
seq = []
for visit in visits:
seq.append(visit[1])
seqs_3digit.append(seq)
print 'Converting strSeqs to intSeqs, and making types'
types = {}
newSeqs = []
for patient in seqs:
newPatient = []
for visit in patient:
newVisit = []
for code in visit:
if code in types:
newVisit.append(types[code])
else:
types[code] = len(types)
newVisit.append(types[code])
newPatient.append(newVisit)
newSeqs.append(newPatient)
print 'Converting strSeqs to intSeqs, and making types for 3digit ICD9 code'
types_3digit = {}
newSeqs_3digit = []
for patient in seqs_3digit:
newPatient = []
for visit in patient:
newVisit = []
for code in set(visit):
if code in types_3digit:
newVisit.append(types_3digit[code])
else:
types_3digit[code] = len(types_3digit)
newVisit.append(types_3digit[code])
newPatient.append(newVisit)
newSeqs_3digit.append(newPatient)
print 'Re-formatting to Med2Vec dataset'
seqs = []
for patient in newSeqs:
seqs.extend(patient)
seqs.append([-1])
seqs = seqs[:-1]
seqs_3digit = []
for patient in newSeqs_3digit:
seqs_3digit.extend(patient)
seqs_3digit.append([-1])
seqs_3digit = seqs_3digit[:-1]
pickle.dump(seqs, open(outFile+'.seqs', 'wb'), -1)
pickle.dump(types, open(outFile+'.types', 'wb'), -1)
pickle.dump(seqs_3digit, open(outFile+'.3digitICD9.seqs', 'wb'), -1)
pickle.dump(types_3digit, open(outFile+'.3digitICD9.types', 'wb'), -1)