-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathml_comparison.py
149 lines (122 loc) · 4.84 KB
/
ml_comparison.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# Load libraries
import pandas
from pandas.plotting import scatter_matrix
import matplotlib.pyplot as plt
from sklearn import model_selection
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
import random
import time
# Print dataset resume
def print_dataset(dataset, groupby='class'):
# Shape
print("\nShape: ")
print(dataset.shape)
# Head
print("\nHead:")
print(dataset.head(20))
# Descriptions
print("\nDescriptions:")
print(dataset.describe())
# Class distribution
print("\nClass distribution:")
print(dataset.groupby(groupby).size())
def plot_box_whisker(dataset):
dataset.plot(kind='box', subplots=True, layout=(3,3), sharex=False, sharey=False)
plt.show()
def plot_histograms(dataset):
dataset.hist()
plt.show()
def plot_scatter_matrix(dataset):
scatter_matrix(dataset)
plt.show()
def train_and_validation_sets(dataset, seed=7):
# Split-out validation dataset
array = dataset.values
X = array[:,0:len(array[0])-1]
Y = array[:,len(array[0])-1]
validation_size = 0.20
return model_selection.train_test_split(X, Y, test_size=validation_size, random_state=seed)
def build_and_check_models(models, X_train, Y_train, seed=7):
# Test options and evaluation metric
scoring = 'accuracy'
splits = 10
# evaluate each model in turn
results = []
names = []
for name, model in models:
kfold = model_selection.KFold(n_splits=splits, random_state=seed)
cv_results = model_selection.cross_val_score(model, X_train, Y_train, cv=kfold, scoring=scoring)
results.append(cv_results)
names.append(name)
msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())
print(msg)
return results, names
def compare_algorithms(results, names):
# Compare Algorithms
fig = plt.figure()
fig.suptitle('Algorithm Comparison')
ax = fig.add_subplot(111)
plt.boxplot(results)
ax.set_xticklabels(names)
plt.show()
def predictions_to_models(models, X_train, X_validation, Y_train, Y_validation, verbose = False):
# Make predictions on validation dataset
for name, model in models:
model.fit(X_train, Y_train)
predictions = model.predict(X_validation)
if verbose:
print("==========================================================================")
print("==> Prediction for model %s", name)
print("\nAccuracy:")
print(accuracy_score(Y_validation, predictions))
print("\nConfusion Matrix:")
print(confusion_matrix(Y_validation, predictions))
print("\nClassification Report:")
print(classification_report(Y_validation, predictions))
else:
acc = 100. * accuracy_score(Y_validation, predictions)
print("%s: %.2f%%" % (name, acc))
# Running
if __name__ == '__main__':
print("==> Running iris flower example...")
print("==> Loading Dataset")
url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"
names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class']
dataset = pandas.read_csv(url, names=names)
print("==> Dataset Summary")
print_dataset(dataset, 'class')
print("==> Whisker plot")
plot_box_whisker(dataset)
print("==> Histogram plot")
plot_histograms(dataset)
print("==> Scatter Plot Matrix")
plot_scatter_matrix(dataset)
# Spot Check Algorithms
models = []
models.append(('Logistic Regression', LogisticRegression()))
models.append(('Linear Discriminant Analysis', LinearDiscriminantAnalysis()))
models.append(('KNeighbors Classifier', KNeighborsClassifier()))
models.append(('Decision Tree Classifier', DecisionTreeClassifier()))
models.append(('Gaussian NB', GaussianNB()))
models.append(('SVM', SVC()))
print("==> Setting seed")
# seed = 7
random.seed(time.time())
seed = random.randint(0, 2**32 - 1)
print("==> Getting validation and train sets")
X_train, X_validation, Y_train, Y_validation = train_and_validation_sets(dataset, seed)
print("\n==> Building and Checking our models")
results, names = build_and_check_models(models, X_train, Y_train, seed)
print("\n==> Comparing results")
compare_algorithms(results, names)
print("\n==> Making Accuracy predictions to specific models")
# predictions_to_models(models, X_train, X_validation, Y_train, Y_validation, True)
predictions_to_models(models, X_train, X_validation, Y_train, Y_validation)