-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathaugmentStage_main.py
189 lines (143 loc) · 6.46 KB
/
augmentStage_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
# Copyright (c) Malong LLC
# All rights reserved.
#
# Contact: [email protected]
#
# This source code is licensed under the LICENSE file in the root directory of this source tree.
""" Training augmented macro-architecture(stage) model """
import os
import torch
import torch.nn as nn
import numpy as np
import utils
import torch.backends.cudnn as cudnn
from tensorboardX import SummaryWriter
from utils.data_util import get_data
from utils.logging_util import get_std_logging
from utils.eval_util import AverageMeter, accuracy
from models.augment_stage import AugmentStage
from config.augmentStage_config import AugmentStageConfig
config = AugmentStageConfig()
device = torch.device("cuda")
# tensorboard
writer = SummaryWriter(log_dir=os.path.join(config.path, "tb"))
writer.add_text('config', config.as_markdown(), 0)
logger = get_std_logging(os.path.join(config.path, "{}.log".format(config.name)))
config.logger = logger
config.print_params(logger.info)
def main():
logger.info("Logger is set - training start")
# set default gpu device id
torch.cuda.set_device(config.gpus[0])
# set seed
np.random.seed(config.seed)
torch.manual_seed(config.seed)
torch.cuda.manual_seed_all(config.seed)
torch.backends.cudnn.benchmark = True
# get data with meta info
input_size, input_channels, n_classes, train_data, valid_data = get_data(
config.dataset, config.data_path, config.cutout_length, validation=True)
criterion = nn.CrossEntropyLoss().to(device)
use_aux = config.aux_weight > 0.
model = AugmentStage(input_size, input_channels, config.init_channels, n_classes, config.layers,
use_aux, config.genotype, config.DAG)
model = nn.DataParallel(model, device_ids=config.gpus).to(device)
# weights optimizer
optimizer = torch.optim.SGD(model.parameters(), config.lr, momentum=config.momentum,
weight_decay=config.weight_decay)
train_loader = torch.utils.data.DataLoader(train_data,
batch_size=config.batch_size,
shuffle=True,
num_workers=config.workers,
pin_memory=True)
valid_loader = torch.utils.data.DataLoader(valid_data,
batch_size=config.batch_size,
shuffle=False,
num_workers=config.workers,
pin_memory=True)
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, config.epochs)
best_top1 = 0.
# training loop
for epoch in range(config.epochs):
lr_scheduler.step()
drop_prob = config.drop_path_prob * epoch / config.epochs
model.module.drop_path_prob(drop_prob)
# training
train(train_loader, model, optimizer, criterion, epoch)
# validation
cur_step = (epoch + 1) * len(train_loader)
top1 = validate(valid_loader, model, criterion, epoch, cur_step)
# save
if best_top1 < top1:
best_top1 = top1
is_best = True
else:
is_best = False
utils.save_checkpoint(model, config.path, is_best)
print("")
logger.info("until now best Prec@1 = {:.4%}".format(best_top1))
logger.info("Final best Prec@1 = {:.4%}".format(best_top1))
def train(train_loader, model, optimizer, criterion, epoch):
top1 = AverageMeter()
top5 = AverageMeter()
losses = AverageMeter()
cur_step = epoch * len(train_loader)
cur_lr = optimizer.param_groups[0]['lr']
logger.info("Epoch {} LR {}".format(epoch, cur_lr))
writer.add_scalar('train/lr', cur_lr, cur_step)
model.train()
for step, (X, y) in enumerate(train_loader):
X, y = X.to(device, non_blocking=True), y.to(device, non_blocking=True)
N = X.size(0)
optimizer.zero_grad()
logits, aux_logits = model(X)
loss = criterion(logits, y)
if config.aux_weight > 0.:
loss += config.aux_weight * criterion(aux_logits, y)
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), config.grad_clip)
optimizer.step()
prec1, prec5 = accuracy(logits, y, topk=(1, 5))
losses.update(loss.item(), N)
top1.update(prec1.item(), N)
top5.update(prec5.item(), N)
if step % config.print_freq == 0 or step == len(train_loader) - 1:
logger.info(
"Train: [{:3d}/{}] Step {:03d}/{:03d} Loss {losses.avg:.3f} "
"Prec@(1,5) ({top1.avg:.1%}, {top5.avg:.1%})".format(
epoch + 1, config.epochs, step, len(train_loader) - 1, losses=losses,
top1=top1, top5=top5))
writer.add_scalar('train/loss', loss.item(), cur_step)
writer.add_scalar('train/top1', prec1.item(), cur_step)
writer.add_scalar('train/top5', prec5.item(), cur_step)
cur_step += 1
logger.info("Train: [{:3d}/{}] Final Prec@1 {:.4%}".format(epoch + 1, config.epochs, top1.avg))
def validate(valid_loader, model, criterion, epoch, cur_step):
top1 = AverageMeter()
top5 = AverageMeter()
losses = AverageMeter()
model.eval()
with torch.no_grad():
for step, (X, y) in enumerate(valid_loader):
X, y = X.to(device, non_blocking=True), y.to(device, non_blocking=True)
N = X.size(0)
logits, _ = model(X)
loss = criterion(logits, y)
prec1, prec5 = accuracy(logits, y, topk=(1,5))
losses.update(loss.item(), N)
top1.update(prec1.item(), N)
top5.update(prec5.item(), N)
if step % config.print_freq == 0 or step == len(valid_loader) - 1:
logger.info(
"Valid: [{:3d}/{}] Step {:03d}/{:03d} Loss {losses.avg:.3f} "
"Prec@(1,5) ({top1.avg:.1%}, {top5.avg:.1%})".format(
epoch + 1, config.epochs, step, len(valid_loader) - 1, losses=losses,
top1=top1, top5=top5))
writer.add_scalar('val/loss', losses.avg, cur_step)
writer.add_scalar('val/top1', top1.avg, cur_step)
writer.add_scalar('val/top5', top5.avg, cur_step)
logger.info("Valid: [{:3d}/{}] Final Prec@1 {:.4%}".format(epoch + 1, config.epochs, top1.avg))
return top1.avg
if __name__ == "__main__":
cudnn.benchmark = True
main()