-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathgenotypes.py
181 lines (152 loc) · 5.24 KB
/
genotypes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# Copyright (c) Malong LLC
# All rights reserved.
#
# Contact: [email protected]
#
# This source code is licensed under the LICENSE file in the root directory of this source tree.
""" Genotypes
- Genotype: normal/reduce gene + normal/reduce cell output connection (concat)
- gene: discrete ops information (w/o output connection)
- dag: real ops (can be mixed or discrete, but Genotype has only discrete information itself)
"""
from collections import namedtuple
import torch
import torch.nn as nn
from models import ops
Genotype = namedtuple('Genotype', 'normal normal_concat reduce reduce_concat')
Genotype2 = namedtuple('Genotype2', 'DAG1 DAG1_concat DAG2 DAG2_concat DAG3 DAG3_concat')
Genotype3 = namedtuple('Genotype3', 'normal1 normal1_concat reduce1 reduce1_concat normal2 normal2_concat reduce2 reduce2_concat normal3 normal3_concat')
PRIMITIVES = [
'max_pool_3x3',
'avg_pool_3x3',
'skip_connect', # identity
'sep_conv_3x3',
'sep_conv_5x5',
'dil_conv_3x3',
'dil_conv_5x5',
'none'
]
PRIMITIVES2 = [
'max_pool_3x3',
'avg_pool_3x3',
'skip_connect', # identity
'none'
]
def to_dag(C_in, gene, reduction):
""" generate discrete ops from gene """
dag = nn.ModuleList()
for edges in gene:
row = nn.ModuleList()
for op_name, s_idx in edges:
# reduction cell & from input nodes => stride = 2
stride = 2 if reduction and s_idx < 2 else 1
op = ops.OPS[op_name](C_in, stride, True)
if not isinstance(op, ops.Identity): # Identity does not use drop path
op = nn.Sequential(
op,
ops.DropPath_()
)
op.s_idx = s_idx
row.append(op)
dag.append(row)
return dag
def from_str(s):
""" generate genotype from string
e.g. "Genotype(
normal=[[('sep_conv_3x3', 0), ('sep_conv_3x3', 1)],
[('sep_conv_3x3', 1), ('dil_conv_3x3', 2)],
[('sep_conv_3x3', 1), ('sep_conv_3x3', 2)],
[('sep_conv_3x3', 1), ('dil_conv_3x3', 4)]],
normal_concat=range(2, 6),
reduce=[[('max_pool_3x3', 0), ('max_pool_3x3', 1)],
[('max_pool_3x3', 0), ('skip_connect', 2)],
[('max_pool_3x3', 0), ('skip_connect', 2)],
[('max_pool_3x3', 0), ('skip_connect', 2)]],
reduce_concat=range(2, 6))"
"""
genotype = eval(s)
return genotype
def parse(alpha, k):
"""
parse continuous alpha to discrete gene.
alpha is ParameterList:
ParameterList [
Parameter(n_edges1, n_ops),
Parameter(n_edges2, n_ops),
...
]
gene is list:
[
[('node1_ops_1', node_idx), ..., ('node1_ops_k', node_idx)],
[('node2_ops_1', node_idx), ..., ('node2_ops_k', node_idx)],
...
]
each node has two edges (k=2) in CNN.
"""
gene = []
assert PRIMITIVES2[-1] == 'none' # assume last PRIMITIVE is 'none'
# 1) Convert the mixed op to discrete edge (single op) by choosing top-1 weight edge
# 2) Choose top-k edges per node by edge score (top-1 weight in edge)
for i, edges in enumerate(alpha):
# edges: Tensor(n_edges, n_ops)
edge_max, primitive_indices = torch.topk(edges[:, :-1], 1)
topk_edge_values, topk_edge_indices = torch.topk(edge_max.view(-1), k)
node_gene = []
for edge_idx in topk_edge_indices:
prim_idx = primitive_indices[edge_idx]
prim = PRIMITIVES2[prim_idx]
if i < 1:
node_gene.append((prim, edge_idx.item()))
else:
node_gene.append((prim, edge_idx.item() + (i - 1)))
gene.append(node_gene)
return gene
def parse_c(alpha, k):
"""
parse continuous alpha to discrete gene.
alpha is ParameterList:
ParameterList [
Parameter(n_edges1, n_ops),
Parameter(n_edges2, n_ops),
...
]
gene is list:
[
[('node1_ops_1', node_idx), ..., ('node1_ops_k', node_idx)],
[('node2_ops_1', node_idx), ..., ('node2_ops_k', node_idx)],
...
]
each node has two edges (k=2) in CNN.
"""
gene = []
assert PRIMITIVES[-1] == 'none' # assume last PRIMITIVE is 'none'
# 1) Convert the mixed op to discrete edge (single op) by choosing top-1 weight edge
# 2) Choose top-k edges per node by edge score (top-1 weight in edge)
for i, edges in enumerate(alpha):
# edges: Tensor(n_edges, n_ops)
edge_max, primitive_indices = torch.topk(edges[:, :-1], 1)
topk_edge_values, topk_edge_indices = torch.topk(edge_max.view(-1), k)
node_gene = []
for edge_idx in topk_edge_indices:
prim_idx = primitive_indices[edge_idx]
prim = PRIMITIVES[prim_idx]
node_gene.append((prim, edge_idx.item()))
gene.append(node_gene)
return gene
def parse_concat(beta):
"""
parse continuous beta ti discrete concat
beta is ParameterList:
ParameterList [
Parameter(1, 1),
Parameter(1, 1),
...
]
concat is list:
range(2, 4)
range(5, 7)
...
range(6, 8)
"""
_, index = torch.topk(beta, 1, dim=0)
return range(index + 4, index + 6)