-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMain_Inference.r
169 lines (129 loc) · 5.74 KB
/
Main_Inference.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
source('Setup.r')
source('GenStates.r')
source('lam_lik.r')
set.seed(3809)
iter = 50000
nstate = all_s[,-1]
nsw_ind = sw_ind
ntime = matrix( all_t, nrow=1)
ostate = nstate
osw_ind = nsw_ind
otime = ntime
osp_state = ostate[which(osw_ind=='SP'),]
## propose a sequence of states which are not the true states
uplen = alen-1 #49
start_time =2
pro_st = GenStates( swlamda,deltat, uplen,start_time, osp_state,ostate,otime,osw_ind)
ostate = pro_st$pro_state ## states at actual switching and sampling points
otime = pro_st$pro_time ## time at actual switching and sampling points
osw_ind = pro_st$pro_sw_ind ## switch indicators at actual swtiching and sampling points
osp_state = ostate[which(osw_ind=='SP'),] ## states at sampling points
opon_ind = pro_st$pro_pon_ind ## switch indicators at all proposed swiching and sampling points
opon_time = pro_st$pro_pon_time ## time at all proposed swiching and sampling points
opon_probAll = pro_st$pro_pon_probAll ## probability at all proposed swiching and sampling points
# sumstate = apply(ostate,1,sum)[-1]
# test = opon_ind[which(opon_ind!='pn')]
# test[which(test=='sp')] = 0
# test[which(test=='OB')] = 1
# test[which(test=='BO')] = -1
# test = as.numeric(test)
# if( sum( sumstate-c(cumsum(test)+5) ) !=0 )
# { break }
ptm <- proc.time()
#### start iteration
for(j in 1:iter)
#for(j in 25001:40000)
{
for(jj in 1:5){ ## state estimation loop
## propose states list for all animals with switching time
uplen = 3 #3 is the minimum, in fact we only update the mid point, the start and end states are fixed
#start_time = sample( seq(2,94,by=2),1)
start_time = sample( seq(2,(mxsamp - (uplen-1)*deltat),by=deltat ),1)
end_time = start_time+(uplen-1)*deltat
pro_st = GenStates( swlamda,deltat, uplen,start_time, osp_state,ostate,otime,osw_ind,opon_ind,opon_time)
nstate = pro_st$pro_state
ntime = pro_st$pro_time
nsw_ind = pro_st$pro_sw_ind
npon_ind = pro_st$pro_pon_ind
npon_time = pro_st$pro_pon_time
iterbreak = pro_st$iterbreak
if(iterbreak == 1)
{
old_par = c(alpha,beta,rho,sigma,theta,Bsigma,swlamda)
par = c(alpha,beta,rho,sigma,theta,Bsigma,swlamda)
resst = Run_KF(par,old_par,osp_state, ostate,otime,osw_ind,opon_ind,opon_time,olik, nstate,ntime,nsw_ind, npon_ind,npon_time ,staccept)
olik = resst$olik
osp_state = resst$SPstate
#swlamda = resst$par[8:9]
ostate = resst$ostate
otime = resst$otime
osw_ind = resst$osw_ind
opon_ind = resst$opon_ind
opon_time = resst$opon_time
staccept = resst$accept
}
}
## propose new switching rates ##########
nlambdaOB <- rnorm(1,swlamda[1],0.05)
nlambdaBO <- rnorm(1,swlamda[2],0.1)
nswlamda=c(nlambdaOB ,nlambdaBO)
if( 0.02<nlambdaOB & nlambdaOB <nlambdaBO & nai*nlambdaBO<Kappa)
{
######################################### switching parameter
lam_oldlik = lam_lik( swlamda , opon_ind)
lam_newlik = lam_lik( nswlamda , opon_ind)
lam_sigHR <- exp(lam_newlik - lam_oldlik )
if(runif(1) < lam_sigHR)
{
swlamda = nswlamda
lamaccept = lamaccept+1
}
#########################################
}
######################################### diffusion parameter
nalpha<- rnorm(1,alpha,prop.alpha) # 0.1
old_par = c(alpha,beta,rho,sigma,theta,Bsigma)
par = c(nalpha,beta,rho,sigma,theta,Bsigma)
resa = Run_KF(par,old_par,osp_state, ostate,otime,osw_ind,opon_ind,opon_time,olik, ostate,otime,osw_ind,npon_ind,npon_time,alaccept)
alpha = resa$par[1]
olik = resa$olik
alaccept = resa$accept
nrho<-( rnorm(1,rho,prop.rho) )
old_par = c(alpha,beta,rho,sigma,theta,Bsigma)
par = c(alpha,beta,nrho,sigma,theta,Bsigma)
resr = Run_KF(par,old_par,osp_state, ostate,otime,osw_ind,opon_ind,opon_time,olik, ostate,otime,osw_ind,npon_ind,npon_time,rhaccept)
rho = resr$par[3]
olik = resr$olik
rhaccept = resr$accept
nsigma<- ( rnorm(1,sigma,prop.sigma) )
old_par = c(alpha,beta,rho,sigma,theta,Bsigma)
par = c(alpha,beta,rho,nsigma,theta,Bsigma)
ress = Run_KF(par,old_par,osp_state, ostate,otime,osw_ind,opon_ind,opon_time,olik, ostate,otime,osw_ind,npon_ind,npon_time,sigaccept)
sigma = ress$par[4]
olik = ress$olik
sigaccept = ress$accept
nBsigma<- ( rnorm(1,Bsigma,prop.Bsigma) )
old_par = c(alpha,beta,rho,sigma,theta,Bsigma)
par = c(alpha,beta,rho,sigma,theta,nBsigma)
resBs = Run_KF(par,old_par,osp_state, ostate,otime,osw_ind, opon_ind,opon_time,olik, ostate,otime,osw_ind,npon_ind,npon_time,Bsigaccept)
Bsigma = resBs$par[7]
olik = resBs$olik
Bsigaccept = resBs$accept
## print output
if(j%%2==0)
{
cat(file=filetheta4, alpha, "\n", append = TRUE)
cat(file=filetheta6, sigma, "\n", append = TRUE)
cat(file=filetheta7, rho, "\n", append = TRUE)
cat(file=filetheta8, Bsigma, "\n", append = TRUE)
cat(file=filetheta9, osp_state, "\n", append = TRUE)
cat(file=filetheta10, swlamda, "\n", append = TRUE)
}
if(j%%5==0)
{
#cat("iteration",j,"alpha",alaccept,"beta",beaccept,"rho",rhaccept,"sigma",sigaccept,"theta",theaccept,"Bsigma",Bsigaccept,"State", staccept,"\n")
#cat("iteration",j,"State", staccept,"alpha",alaccept,"beta",beaccept,"\n") # "sigma",sigaccept
cat("iteration",j,"State", staccept,"alpha",alaccept,"rho",rhaccept,"Bsigma",Bsigaccept,"sigma",sigaccept,"lambdas",lamaccept,"iterkappa",pro_st$iterkappa,"\n")
}
}
proc.time() - ptm