-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathECNN.py
113 lines (88 loc) · 3.48 KB
/
ECNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import numpy as np
import os
import keras
from keras.models import Sequential
from keras.layers import Conv2D, Activation, BatchNormalization, Input, Add, ZeroPadding2D, Conv2DTranspose
from keras.models import Model
from keras.optimizers import SGD, Adam, RMSprop
import glob
from classes import DataGenerator, training_log
from keras.models import load_model
#creating a residual block
def residual_block(x_input):
conv1 = Conv2D(64, kernel_size=(3,3), strides=(1, 1), padding='same')(x_input)
bn1 = BatchNormalization()(conv1)
act1 = Activation('relu')(bn1)
conv2 = Conv2D(64, kernel_size=(3,3), strides=(1, 1), padding='same')(act1)
bn2 = BatchNormalization()(conv2)
return Add()([bn2, Activation('relu')(x_input), x_input])
def build_ECNN():
x_input = Input(shape=(224, 224, 4))
conv1 = Conv2D(64, kernel_size=(3,3), strides=(1, 1), padding='same')(x_input)
bn1 = BatchNormalization()(conv1)
act1 = Activation('relu')(bn1)
conv2 = Conv2D(64, kernel_size=(3,3), strides=(1, 1), padding='same')(act1)
bn2 = BatchNormalization()(conv2)
act2 = Activation('relu')(bn2)
pad3 = ZeroPadding2D(padding=(1,1))(act2)
conv3 = Conv2D(64, kernel_size=(3,3), strides=(2, 2), padding='valid')(pad3)
bn3 = BatchNormalization()(conv3)
act3 = Activation('relu')(bn3)
activation = act3
# attaching 13 residual blocks
for i in range(13):
concat = residual_block(activation)
activation = concat
conv_1 = Conv2DTranspose(64, kernel_size=(2,2), strides=(2,2), padding='valid')(activation)
bn_1 = BatchNormalization()(conv_1)
act_1 = Activation('relu')(bn_1)
conv_2 = Conv2D(64, kernel_size=(3,3), strides=(1, 1), padding='same')(act_1)
bn_2 = BatchNormalization()(conv_2)
act_2 = Activation('relu')(bn_2)
conv_3 = Conv2D(1, kernel_size=(1,1), strides=(1, 1), padding='same')(act_2)
model = Model(inputs=x_input, outputs=conv_3)
return model
def load_data(file_path):
with file_path.open() as file:
data = file.read_lines()
return data
def read_paths(file_path):
with open(file_path, 'r') as data:
return data.readlines()
#model summary
model = build_ECNN()
#load a saved model
# model = load_model('model_30.h5')
print model.summary()
#model parameters
start_epoch = 6
max_iters = 40
batch_size = 16
sgd = SGD(lr=1e-2, decay=0.0005, momentum=0.9, nesterov=True)
rmsprop = RMSprop(lr=1e-2, decay=0.0005, rho=0.9)
adam = Adam(lr=1e-2, decay = 0.0005, beta_1 = 0.9, beta_2 = 0.999)
#read paths of train, val and test images
train_ids = read_paths('Data/train_imgs.txt')
val_ids = read_paths('Data/val_imgs.txt')
test_ids = read_paths('Data/test_imgs.txt')
# os.chdir('Data/')
model.compile(optimizer=sgd, loss='mse')
params = {'dim_x': 224,
'dim_y': 224,
'dim_z': 4,
'batch_size': batch_size,
'shuffle': True}
train_generator = DataGenerator(**params).generate(train_ids)
val_generator = DataGenerator(**params).generate(val_ids)
#
# for i in range(max_iters):
call_back = training_log()
model.fit_generator(generator = train_generator,
steps_per_epoch = len(train_ids)/batch_size,
validation_data = val_generator,
validation_steps = len(val_ids)/batch_size,
epochs=max_iters,
callbacks = [call_back])
# model.save("model" +str(i) + str(start_epoch) + ".h5")
np.save("val_losses.npy",call_back.val_loss)
np.save("train_losses.npy",call_back.train_loss)