-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmodel_airplane.py
408 lines (356 loc) · 17.3 KB
/
model_airplane.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
import numpy as np
from keras import callbacks
from keras import utils
from keras.models import *
from keras.layers import Input, merge, Conv2D, MaxPooling2D, AveragePooling2D, UpSampling2D, Dropout, Cropping2D, Activation,Conv2DTranspose
from keras.layers.core import Reshape, Lambda
from keras.optimizers import *
from keras.callbacks import ModelCheckpoint, LearningRateScheduler
from keras import backend as keras
from keras.metrics import categorical_accuracy
from keras.activations import softmax
from keras import backend as K
from keras.layers.normalization import BatchNormalization
import glob
import tensorflow as tf
import os
NUM_PARTS = 4
CATEGORY_NAME = 'Airplane'
CATEGORY_ID = '02691156'
X_TRAIN_PATH = './data/prepared_old_train/' + CATEGORY_NAME + '_' + CATEGORY_ID + '_X_train.npy'
Y_TRAIN_PATH = './data/prepared_old_train/' + CATEGORY_NAME + '_' + CATEGORY_ID + '_y_train.npy'
X_VAL_PATH = './data/prepared/' + CATEGORY_NAME + '_' + CATEGORY_ID + '_X_val.npy'
Y_VAL_PATH = './data/prepared/' + CATEGORY_NAME + '_' + CATEGORY_ID + '_y_val.npy'
IND_MAP_VAL_PATH = './data/prepared/' + CATEGORY_NAME + '_' + CATEGORY_ID + '_ind_map_val.npy'
LABEL_VAL_PATH = './data/val_label/' + CATEGORY_ID + '/*'
def IoU_loss(y_true, y_pred):
loss_iou=0
# for i in range(y_true.shape[0]):
# for i in range(32):
y_true =K.reshape(y_true, (-1,2048,NUM_PARTS))
y_pred =K.reshape(y_pred, (-1,2048,NUM_PARTS))
for j in range(NUM_PARTS):
dot = tf.multiply(y_true[:,j],y_pred[:,j])
loss_iou += K.sum(K.flatten(dot))/K.sum(K.flatten(y_true[:,j]+y_pred[:,j]-dot))
return 1-loss_iou/NUM_PARTS
class myUnet(object):
def __init__(self, n_pts = 2048):
self.save_file = 'unet_ch1_' + CATEGORY_NAME + '.hdf5'
self.num_parts = NUM_PARTS
self.n_pts = n_pts
self.model = self.get_unet()
def load_data(self):
x_train = np.load(X_TRAIN_PATH)[:,:,:,1]
x_train = x_train.reshape((-1,2048,3,1))
print "x_train shape", x_train.shape
y_train = np.load(Y_TRAIN_PATH)
yt_shape = y_train.shape
print "y_train shape", y_train.shape
y_train = utils.to_categorical(y_train - 1,self.num_parts)
y_train = np.reshape(y_train,(yt_shape[0],yt_shape[1],self.num_parts))
print "y_train shape", y_train.shape
x_val = np.load(X_VAL_PATH)[:,:,:,1]
x_val = x_val.reshape((-1,2048,3,1))
y_val = np.load(Y_VAL_PATH)
yv_shape = y_val.shape
y_val = utils.to_categorical(y_val - 1,self.num_parts)
y_val = np.reshape(y_val,(yv_shape[0],yv_shape[1],self.num_parts))
return x_train, y_train, x_val, y_val
def get_unet(self):
inputs = Input((self.n_pts, 3,1))
up_crop = Cropping2D(cropping=((0,1858),(0,0)))(inputs)
up_shape = up_crop.shape
up_crop = Lambda(lambda x: K.reverse(x,axes=1),output_shape=(190,3,1))(up_crop)
print "up_crop shape:",up_crop.shape
down_crop = Cropping2D(cropping=((1858,0),(0,0)))(inputs)
down_shape = down_crop.shape
down_crop = Lambda(lambda x: K.reverse(x,axes=1),output_shape=(190,3,1))(down_crop)
print "down_crop shape:",down_crop.shape
inputs_mirrored = merge([inputs,down_crop], mode = 'concat', concat_axis = 1)
print "inputs shape:",inputs_mirrored.shape
inputs_mirrored = merge([up_crop,inputs_mirrored], mode = 'concat', concat_axis = 1)
print "inputs shape:",inputs_mirrored.shape
conv1 = Conv2D(64, (3,3), activation = 'linear', padding = 'valid', kernel_initializer = 'glorot_normal')(inputs_mirrored)
print "conv1 shape:",conv1.shape
conv1 = BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001)(conv1)
conv1 = Activation('relu')(conv1)
conv1 = Conv2D(64, (3,1), activation = 'linear', padding = 'valid', kernel_initializer = 'glorot_normal')(conv1)
print "conv1 shape:",conv1.shape
conv1 = BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001)(conv1)
conv1 = Activation('relu')(conv1)
crop1 = Cropping2D(cropping=((184,184),(0,0)))(conv1)
print "crop1 shape:",crop1.shape
pool1 = AveragePooling2D(pool_size=(2, 1))(conv1)
print "pool1 shape:",pool1.shape
conv2 = Conv2D(128, (3,1), activation = 'linear', padding = 'valid', kernel_initializer = 'glorot_normal')(pool1)
print "conv2 shape:",conv2.shape
conv2 = BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001)(conv2)
conv2 = Activation('relu')(conv2)
conv2 = Conv2D(128, (3,1), activation = 'linear', padding = 'valid', kernel_initializer = 'glorot_normal')(conv2)
print "conv2 shape:",conv2.shape
conv2 = BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001)(conv2)
conv2 = Activation('relu')(conv2)
crop2 = Cropping2D(cropping=((88,88),(0,0)))(conv2)
print "crop2 shape:",crop2.shape
pool2 = MaxPooling2D(pool_size=(2,1))(conv2)
print "pool2 shape:",pool2.shape
conv3 = Conv2D(256, (3,1), activation = 'linear', padding = 'valid', kernel_initializer = 'glorot_normal')(pool2)
print "conv3 shape:",conv3.shape
conv3 = BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001)(conv3)
conv3 = Activation('relu')(conv3)
conv3 = Conv2D(256, (3,1), activation = 'linear', padding = 'valid', kernel_initializer = 'glorot_normal')(conv3)
print "conv3 shape:",conv3.shape
conv3 = BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001)(conv3)
conv3 = Activation('relu')(conv3)
crop3 = Cropping2D(cropping=((40,40),(0,0)))(conv3)
print "crop3 shape:",crop3.shape
pool3 = MaxPooling2D(pool_size=(2,1))(conv3)
print "pool3 shape:",pool3.shape
conv4 = Conv2D(512, (3,1), activation = 'linear', padding = 'valid', kernel_initializer = 'glorot_normal')(pool3)
print "conv4 shape:",conv4.shape
conv4 = BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001)(conv4)
conv4 = Activation('relu')(conv4)
conv4 = Conv2D(512, (3,1), activation = 'linear', padding = 'valid', kernel_initializer = 'glorot_normal')(conv4)
print "conv4 shape:",conv4.shape
conv4 = BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001)(conv4)
conv4 = Activation('relu')(conv4)
drop4 = Dropout(0.5)(conv4)
crop4 = Cropping2D(cropping=((16,16),(0,0)))(drop4)
print "crop4 shape:",crop4.shape
pool4 = MaxPooling2D(pool_size=(2,1))(drop4)
print "pool4 shape:",pool4.shape
conv5 = Conv2D(1024, (3,1), activation = 'linear', padding = 'valid', kernel_initializer = 'glorot_normal')(pool4)
print "conv5 shape:",conv5.shape
conv5 = BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001)(conv5)
conv5 = Activation('relu')(conv5)
conv5 = Conv2D(1024, (3,1), activation = 'linear', padding = 'valid', kernel_initializer = 'glorot_normal')(conv5)
print "conv5 shape:",conv5.shape
conv5 = BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001)(conv5)
conv5 = Activation('relu')(conv5)
drop5 = Dropout(0.5)(conv5)
crop5 = Cropping2D(cropping=((4,4),(0,0)))(drop5)
print "crop5 shape:",crop5.shape
pool5 = MaxPooling2D(pool_size=(2,1))(drop5)
print "pool5 shape:",pool5.shape
conv6 = Conv2D(2048, (3,1), activation = 'linear', padding = 'valid', kernel_initializer = 'glorot_normal')(pool5)
print "conv6 kerasshape:",conv6.shape
conv6 = BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001)(conv6)
conv6 = Activation('relu')(conv6)
conv6 = Conv2D(2048, (3,1), activation = 'linear', padding = 'valid', kernel_initializer = 'glorot_normal')(conv6)
print "conv6 shape:",conv6.shape
conv6 = BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001)(conv6)
conv6 = Activation('relu')(conv6)
# conv6 = Conv2D(2048, (3,1), activation = 'relu', padding = 'valid', kernel_initializer = 'glorot_normal')(conv6)
# print "conv6 shape:",conv6.shape
drop6 = Dropout(0.5)(conv6)
# up7 = Conv2D(1024, (1,1), activation = 'relu', padding = 'valid', kernel_initializer = 'glorot_normal')(UpSampling2D(size = (2,1))(drop6))
up7 = Conv2DTranspose(1024,(2,1),strides = (2,1))(drop6)
print "up7 shape:",up7.shape
merge7 = merge([crop5,up7], mode = 'concat', concat_axis = 3)
print "merge7 shape:",merge7.shape
conv7 = Conv2D(1024, (3,1), activation = 'linear', padding = 'valid', kernel_initializer = 'glorot_normal')(merge7)
print "conv7 shape:",conv7.shape
conv7 = BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001)(conv7)
conv7 = Activation('relu')(conv7)
conv7 = Conv2D(1024, (3,1), activation = 'linear', padding = 'valid', kernel_initializer = 'glorot_normal')(conv7)
print "conv7 shape:",conv7.shape
conv7 = BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001)(conv7)
conv7 = Activation('relu')(conv7)
# up8 = Conv2D(512, (1,1), activation = 'relu', padding = 'valid', kernel_initializer = 'glorot_normal')(UpSampling2D(size = (2,1))(conv7))
up8 = Conv2DTranspose(512,(2,1),strides = (2,1))(conv7)
print "up8 shape:",up8.shape
merge8 = merge([crop4,up8], mode = 'concat', concat_axis = 3)
print "merge8 shape:",merge8.shape
conv8 = Conv2D(512, (3,1), activation = 'linear', padding = 'valid', kernel_initializer = 'glorot_normal')(merge8)
print "conv8 shape:",conv8.shape
conv8 = BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001)(conv8)
conv8 = Activation('relu')(conv8)
conv8 = Conv2D(512, (3,1), activation = 'linear', padding = 'valid', kernel_initializer = 'glorot_normal')(conv8)
print "conv8 shape:",conv8.shape
conv8 = BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001)(conv8)
conv8 = Activation('relu')(conv8)
# up9 = Conv2D(256, (1,1), activation = 'relu', padding = 'valid', kernel_initializer = 'glorot_normal')(UpSampling2D(size = (2,1))(conv8))
up9 = Conv2DTranspose(256,(2,1),strides = (2,1))(conv8)
print "up9 shape:",up9.shape
merge9 = merge([crop3,up9], mode = 'concat', concat_axis = 3)
print "merge9 shape:",merge9.shape
conv9 = Conv2D(256, (3,1), activation = 'linear', padding = 'valid', kernel_initializer = 'glorot_normal')(merge9)
print "merge9 shape:",merge9.shape
conv9 = BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001)(conv9)
conv9 = Activation('relu')(conv9)
conv9 = Conv2D(256, (3,1), activation = 'linear', padding = 'valid', kernel_initializer = 'glorot_normal')(conv9)
print "merge9 shape:",merge9.shape
conv9 = BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001)(conv9)
conv9 = Activation('relu')(conv9)
# up10 = Conv2D(128, (1,1), activation = 'relu', padding = 'valid', kernel_initializer = 'glorot_normal')(UpSampling2D(size = (2,1))(conv9))
up10 = Conv2DTranspose(128,(2,1),strides = (2,1))(conv9)
print "up10 shape:",up10.shape
merge10 = merge([crop2,up10], mode = 'concat', concat_axis = 3)
print "merge10 shape:",merge10.shape
conv10 = Conv2D(128, (3,1), activation = 'linear', padding = 'valid', kernel_initializer = 'glorot_normal')(merge10)
print "conv10 shape:",conv10.shape
conv10 = BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001)(conv10)
conv10 = Activation('relu')(conv10)
conv10 = Conv2D(128, (3,1), activation = 'linear', padding = 'valid', kernel_initializer = 'glorot_normal')(conv10)
print "conv10 shape:",conv10.shape
conv10 = BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001)(conv10)
conv10 = Activation('relu')(conv10)
# up11 = Conv2D(64, (1,1), activation = 'relu', padding = 'valid', kernel_initializer = 'glorot_normal')(UpSampling2D(size = (2,1))(conv10))
up11 = Conv2DTranspose(64,(2,1),strides = (2,1))(conv10)
print "up11 shape:",up11.shape
merge11 = merge([crop1,up11], mode = 'concat', concat_axis = 3)
print "merge11 shape:",merge11.shape
conv11 = Conv2D(64, (3,1), activation = 'relu', padding = 'valid', kernel_initializer = 'glorot_normal')(merge11)
print "conv11 shape:",conv11.shape
conv11 = BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001)(conv11)
conv11 = Activation('relu')(conv11)
conv11 = Conv2D(32,(3,1), activation = 'relu', padding = 'valid', kernel_initializer = 'glorot_normal')(conv11)
print "conv11 shape:",conv11.shape
conv11 = BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001)(conv11)
conv11 = Activation('relu')(conv11)
conv11 = Conv2D(16, (3,1), activation = 'relu', padding = 'valid', kernel_initializer = 'glorot_normal')(conv11)
print "conv11 shape:",conv11.shape
conv11 = BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001)(conv11)
conv11 = Activation('relu')(conv11)
conv11 = Conv2D(self.num_parts, (3,1), padding = 'valid', kernel_initializer = 'glorot_normal')(conv11)
conv11 = BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001)(conv11)
print "conv11 shape:",conv11.shape
conv11 = Reshape((2048, self.num_parts))(conv11)
print "conv11 shape:",conv11.shape
conv11 = Lambda(self.softmax_,output_shape=(2048,self.num_parts))(conv11)
print "conv11 shape:",conv11.shape
# conv11 = up_crop = Lambda(lambda x: K.argmax(x,axis=2),output_shape=(2048,1))(conv11)
model = Model(input = inputs, output = conv11)
model.compile(optimizer = Adam(lr = 1e-4, decay = 0.0001), loss = IoU_loss, metrics = ['accuracy'])
model.summary()
return model
def softmax_(self,x):
return softmax(x,axis=2)
def train(self):
print("loading data")
x_train, y_train, x_val, y_val = self.load_data()
print("loading data done")
# model_checkpoint = ModelCheckpoint('unet.hdf5', monitor='loss',verbose=1, save_best_only=True)
print('Fitting model...')
mcb = My_Callback(x_val,y_val)
prev_val_acc = 0
if os.path.exists(self.save_file):
self.model.load_weights(self.save_file)
print("got weights")
# model.fit(x_train, y_train, batch_size=16, epochs=5, verbose=1, shuffle=True, callbacks=[model_checkpoint])
self.model.fit(x_train, y_train, batch_size=16, epochs=100, verbose=1, shuffle=True, callbacks=[mcb])
print('Saving model..')
self.model.save(self.save_file)
# np.save('imgs_mask_test.npy', imgs_mask_test)
# def predict(self):
# print("loading data")
# x_train, y_train, x_val, y_val = self.load_data()
# print("loading data done")
# model = self.get_unet()
# print("got unet")
# model.load_weights('unet.hdf5')
# print("loaded weights")
# predictions = model.predict(x_val, batch_size = 1)
# return predictions
class My_Callback(callbacks.Callback):
def __init__(self,x_val, y_val):
self.X_val = x_val
self.Y_val = y_val
self.num_epochs = 0
self.calc_epoch = 1
def on_epoch_end(self, epoch, logs={}):
if self.num_epochs%self.calc_epoch == 0:
print('predict test data')
val_score = self.model.evaluate(self.X_val,self.Y_val, batch_size=52, verbose=1)
print val_score
P = self.model.predict(self.X_val, verbose = 0)
indices = np.load(IND_MAP_VAL_PATH)
count = 0
flists = sorted(glob.glob(LABEL_VAL_PATH))
IoU_sum = 0
Acc_sum = 0
for val_file in flists:
# print(val_file)
with open(val_file,'r') as myfile:
gt = np.loadtxt(myfile.readlines())
num_pts = len(gt)
seg_data = np.zeros((num_pts,NUM_PARTS))
num_exs = 1
if num_pts>2048:
num_exs = 2
for i in range(num_exs):
ind = indices[count]
prediction = P[count]
for j in range(2048):
seg_data[ind[j]] += prediction[j]
count += 1
seg_pred = np.argmax(seg_data,axis=1) + 1
m_iou, m_Acc = IoU(gt,seg_pred)
IoU_sum = IoU_sum + m_iou
Acc_sum += m_Acc
# print('IIIIOOOOOOUUUUU: ' + str(IoU(gt,seg_pred)))
print('Mean IoU on val_data: ' + str(IoU_sum/len(flists)))
print('Mean acc. on val_data: ' + str(Acc_sum/len(flists)))
self.num_epochs += 1.
def prepare_seg_path(original_path):
path_segs = original_path.split('.')
path_segs = path_segs[1].split('/')
return './temp_segs/' + path_segs[len(path_segs)-1] + '.seg'
# def mean_IoU(y_true, y_pred):
# y_pred = K.argmax(y_pred,axis=2)
# y_true = K.argmax(y_true,axis=2)
# score, up_opt = tf.metrics.mean_iou(K.flatten(y_true), K.flatten(y_pred), NUM_PARTS)
# K.get_session().run(tf.local_variables_initializer())
# with tf.control_dependencies([up_opt]):
# score = tf.identity(score)
# return score
def IoU(gt_seg,pred_seg):
tp, tn, fp, fn = np.zeros(NUM_PARTS), np.zeros(NUM_PARTS), np.zeros(NUM_PARTS), np.zeros(NUM_PARTS)
for i in range(NUM_PARTS):
pred_true_inds = np.where(pred_seg == (i+1))[0]
pred_false_inds = np.where(pred_seg != (i+1))[0]
# print(gt_seg[pred_true_inds])
tp[i] = len(np.where(gt_seg[pred_true_inds] == (i+1) )[0])
tn[i] = len(np.where(gt_seg[pred_false_inds] != (i+1) )[0])
fp[i] = len(pred_true_inds) - tp[i]
fn[i] = len(np.where(gt_seg[pred_false_inds] == (i+1) )[0])
# print(tp)
# print(fp)
# print(fn)
denom = (tp + fp + fn)
iou = tp / denom
# avoiding division by zero
iou[np.where(denom == 0)[0]] = 0
# print(iou)
return sum(iou)/NUM_PARTS, sum((tp + tn)/(tp + tn + fp + fn))/NUM_PARTS
if __name__ == '__main__':
myunet = myUnet()
# trainable_count = int(np.sum([K.count_params(p) for p in set(model.trainable_weights)]))
# non_trainable_count = int(np.sum([K.count_params(p) for p in set(model.non_trainable_weights)]))
#
# print('Total params: {:,}'.format(trainable_count + non_trainable_count))
# print('Trainable params: {:,}'.format(trainable_count))
# print('Non-trainable params: {:,}'.format(non_trainable_count))
myunet.train()
# P = myunet.predict()
#
# indices = np.load('./data/prepared/Motorbike_03790512_ind_map_val.npy')
# count = 0
#
# flists = sorted(glob.glob('./data/val_data/03790512/*'))
# for val_file in flists:
# print(val_file)
# with open(val_file,'r') as myfile:
# num_pts = len(myfile.readlines())
# seg_data = np.zeros((num_pts,6))
# num_exs = 1
# if num_pts>2048:
# num_exs = 2
# for i in range(num_exs):
# ind = indices[count]
# prediction = P[count]
# for j in range(2048):
# seg_data[ind[j]] += prediction[j]
# count += 1
# seg_file = prepare_seg_path(val_file)
# np.savetxt(seg_file,np.argmax(seg_data,axis=1) + 1,fmt='%1.f')