-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathrun.py
executable file
·387 lines (300 loc) · 11.9 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
#!/usr/bin/env python3
import os
import sys
import time
import glob
import copy
import math
import json
import copy
# for animation
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import collections as mc
from mpl_toolkits.mplot3d.art3d import Line3DCollection
from matplotlib.animation import FuncAnimation
sys.path.append('../../')
import software
import network
import topology
import mobility
import traffic
import ping
from shared import Remote
import shared
MAX_STATION_TO_SATELLITE_CONNECTIONS = 2
MAX_STATION_TO_SATELLITE_DISTANCE = 2_000_000
MAX_SATELLITE_TO_SATELLITE_CONNECTIONS = 5
MAX_SATELLITE_TO_SATELLITE_DISTANCE = 1_500_000
TEST_SPEEDUP = 2
ANIMATION_SPEEDUP = 100
unique_id_counter = 0
def getNewUniqueID():
global unique_id_counter
new_id = unique_id_counter
unique_id_counter += 1
return new_id
class Satellite:
def __init__(self, height, azimuth, inclination,
offset_t=0, offset_azimuth=0):
self.id = getNewUniqueID()
self.name = str(self.id)
self.plot = None # for animation
self.height = height
self.azimuth = np.radians(azimuth) # 0-360°
self.inclination = np.radians(inclination) # 0-90°
self.T = self.satellite_period(height)
self.offset_azimuth = np.radians(offset_azimuth)
self.offset_t = np.radians(offset_t)
self.pos = [0, 0, 0]
# get orbital period in seconds
def satellite_period(self, h):
G = 6.67430e-11 # gravitational constant
M = 5.9722e24 # earth mass
R = 6371000 # earth radius
r = R + h
v = np.sqrt(G * M / r)
return 2 * np.pi * r / v
def update_position(self, t):
R = 6371000 # earth radius
r = R + self.height
z = self.offset_azimuth + self.azimuth
a = self.inclination
p = self.offset_t + 2 * np.pi * t / self.T
self.pos[0] = r * (np.cos(a)*np.cos(z)*np.cos(p) - np.sin(z)*np.sin(p))
self.pos[1] = r * (np.cos(a)*np.sin(z)*np.cos(p) + np.cos(z)*np.sin(p))
self.pos[2] = r * np.sin(a)*np.cos(p)
# ground station
class Station():
def __init__(self, name, lat, lon):
R = 6371000 # earth radius
self.id = getNewUniqueID()
self.name = name
self.height = R
self.plot = None # for animation
lat = np.radians(lat)
lon = np.radians(lon)
self.pos = [R * np.cos(lat) * np.cos(lon),
R * np.cos(lat) * np.sin(lon),
R * np.sin(lat)]
# get list of ground stations
def get_station_set1():
return [
Station("Paris", 48.864716, 2.349014),
Station("Berlin", 52.52437, 13.41053),
Station("New York", 40.7127837, -74.0059413),
Station("Seoul", 37.532600, 127.024612),
Station("New Dehli", 28.679079, 77.069710),
Station("Rio de Janeiro", -22.908333, -43.196388),
]
# get list of satellites
def get_satellite_set1():
satellites = []
NUM_SATELLITES = 50
for i in range(0, NUM_SATELLITES):
satellites.append(Satellite(560000, 0, 53, i * 360 / NUM_SATELLITES, 0))
NUM_SATELLITES = 30
for i in range(0, NUM_SATELLITES):
satellites.append(Satellite(550000, 0, 53, i * 360 / NUM_SATELLITES, 200))
NUM_SATELLITES = 60
for i in range(0, NUM_SATELLITES):
satellites.append(Satellite(550000, 0, 20, i * 360 / NUM_SATELLITES, 200))
NUM_SATELLITES = 30
for i in range(0, NUM_SATELLITES):
satellites.append(Satellite(600000, 0, 0, i * 360 / NUM_SATELLITES, 200))
NUM_SATELLITES = 40
for i in range(0, NUM_SATELLITES):
satellites.append(Satellite(700000, 0, 53, i * 360 / NUM_SATELLITES, 240))
NUM_SATELLITES = 40
for i in range(0, NUM_SATELLITES):
satellites.append(Satellite(2000000, 0, 70, i * 360 / NUM_SATELLITES, 240))
return satellites
# squared distance
def distance2(pos1, pos2):
return (pos1[0] - pos2[0]) ** 2 + (pos1[1] - pos2[1]) ** 2 + (pos1[2] - pos2[2]) ** 2
def distance(pos1, pos2):
return np.sqrt(distance2(pos1, pos2))
def get_connections(stations, satellites):
connections = []
# connect satellites
for s1 in satellites:
found = []
for s2 in satellites:
d2 = distance2(s1.pos, s2.pos)
if d2 > 0 and d2 <= (MAX_SATELLITE_TO_SATELLITE_DISTANCE ** 2):
# transfer quality
tq = 1.0 - (np.sqrt(d2) / MAX_SATELLITE_TO_SATELLITE_DISTANCE) ** 2
found.append((s1, s2, tq))
found.sort(key=lambda s: s[2])
connections.extend(found[:MAX_SATELLITE_TO_SATELLITE_CONNECTIONS])
# connect stations and satellites
for s1 in stations:
found = []
for s2 in satellites:
d2 = distance2(s1.pos, s2.pos)
if d2 > 0 and d2 <= (MAX_STATION_TO_SATELLITE_DISTANCE ** 2):
# transfer quality
tq = 1.0 - (np.sqrt(d2) / MAX_STATION_TO_SATELLITE_DISTANCE) ** 2
found.append((s1, s2, tq))
found.sort(key=lambda s: s[2])
connections.extend(found[:MAX_STATION_TO_SATELLITE_CONNECTIONS])
return connections
# for creating a visual animation
def start_animation(satellites, stations):
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.set_xlim3d([-7000000.0, 7000000.0])
ax.set_xlabel('X')
ax.set_ylim3d([-7000000.0, 7000000.0])
ax.set_ylabel('Y')
ax.set_zlim3d([-7000000, 7000000.0])
ax.set_zlabel('Z')
# height => plot object for satellites/stations
plots = {}
def getPlot(height):
h = int(height)
if h not in plots:
plots[h] = ax.scatter3D([], [], [])
return plots[h]
for s in stations:
s.plot = getPlot(s.height)
for s in satellites:
s.plot = getPlot(s.height)
# ground stations do not move => print labels once here
for s in stations:
# add labels to ground stations
ax.text(s.pos[0], s.pos[1], s.pos[2], s.name, size=10, zorder=1, color='k')
def get_LineCollection3d(connections):
colors = []
segments = []
for c in connections:
s1 = c[0]
s2 = c[1]
tq = c[2]
segments.append((s1.pos, s2.pos))
colors.append((1.0 - tq, tq, 0.0))
return Line3DCollection(segments, colors=colors, linewidth=1)
started = time.time() # seconds until epoch
lc = get_LineCollection3d([])
ax.add_collection3d(lc)
def update(i):
sim_time = ANIMATION_SPEEDUP * (time.time() - started)
time_h = int((sim_time/(60*60))%24)
time_m = int((sim_time/60)%60)
time_s = int(sim_time%60)
plt.title(f'Time: {time_h:02d}h:{time_m:02d}m:{time_s:02d}s (x{ANIMATION_SPEEDUP}, {len(satellites)} satellites)', x=0.5, y=1.0, size=20)
# calculate satellite positions (stations do not change)
for s in satellites:
s.update_position(sim_time)
for h, plot in plots.items():
plot._offsets3d = ([], [], [])
for s in stations:
s.plot._offsets3d[0].append(s.pos[0])
s.plot._offsets3d[1].append(s.pos[1])
s.plot._offsets3d[2].append(s.pos[2])
for s in satellites:
s.plot._offsets3d[0].append(s.pos[0])
s.plot._offsets3d[1].append(s.pos[1])
s.plot._offsets3d[2].append(s.pos[2])
connections = get_connections(stations, satellites)
nonlocal lc
lc.remove()
lc = get_LineCollection3d(connections)
ax.add_collection3d(lc)
fig.tight_layout()
ani = FuncAnimation(fig, update, frames=30)
#ani.save('animation.gif', writer='imagemagick', fps=15)
plt.show()
exit(0)
# JSON representation of the current state
# name, x, y, z, tq are optional
def get_state(stations, satellites, connections):
links = []
nodes = []
# add satellites and connect them
for s in satellites:
nodes.append({"id": s.id, "x": s.pos[0], "y": s.pos[1], "z": s.pos[2]})
for s in stations:
nodes.append({"id": s.id, "name": s.name, "x": s.pos[0], "y": s.pos[1], "z": s.pos[2]})
for c in connections:
links.append({"source": c[0].id, "target": c[1].id, "tq": c[2]})
return {"nodes": nodes, "links": links}
satellites = get_satellite_set1()
stations = get_station_set1()
# uncomment for animation
#start_animation(satellites, stations)
remotes= [Remote()]
shared.check_access(remotes)
software.clear(remotes)
network.clear(remotes)
prefix = os.environ.get('PREFIX', '')
def print_stations():
print('station names:')
for s in stations:
print(f'{s.id} => {s.name}')
# calculate median
# input: [([...], [...]), ([...], [...]), ...]
# output: [(...), (...)]
def merge_results(results):
if len(results) == 0:
return None
ret = copy.copy(results[0])
for result in results[1:]:
for i, value in enumerate(result[1]):
ret[1][i] += value
for i, value in enumerate(ret[1]):
ret[1][i] /= len(ret[0])
return ret
def run(protocol, csvfile):
# informal, data does not change
print_stations()
state = get_state(stations, satellites, [])
# pick 20 random paths between ground stations
paths = ping.get_random_paths(nodes=shared.get_all_nodes(state), count=20)
# create network and start routing software
network.apply(state, remotes=remotes)
DURATION_SIMTIME_SEC = 2*60*60 # 2 hours in simulation time for each round
STEP_SIMTIME_SEC = 5*60 # update simulation and measure every 5 minutes
for speedup in range(4, 36, 2):
shared.seed_random(42)
software.start(protocol)
ping_results = []
traffic_begin = traffic.traffic()
test_beg_ms = shared.millis()
step_realtime_sec = int(STEP_SIMTIME_SEC / speedup)
for sim_time_sec in range(0, DURATION_SIMTIME_SEC, STEP_SIMTIME_SEC):
wait_beg_ms = shared.millis()
real_time_sec = (wait_beg_ms - test_beg_ms) / 1000
print(f'{protocol}: speedup: {speedup}x, sim time {int(sim_time_sec)}s, real time {int(real_time_sec)}s')
# update node positions
for s in satellites:
s.update_position(sim_time_sec)
# update network
connections = get_connections(stations, satellites)
state = get_state(stations, satellites, connections)
network.apply(state=state, remotes=remotes)
# waits until time is up (errors if time is already up!)
if not shared.wait(wait_beg_ms, step_realtime_sec - 2):
break
ping_result = ping.ping(paths=paths, duration_ms=2000, verbosity='verbose', remotes=remotes)
ping_results.append(ping_result.getData())
#realtime_sec = (shared.millis() - test_beg_ms) / 1000
#traffic_end = traffic.traffic()
# add data to csv file
#extra = (['x', 'speedup', 'station_count', 'satellite_count', 'realtime_sec', 'simtime_sec'],
# [f'{speedup}_{realtime_sec}', speedup, len(stations), len(satellites), realtime_sec, sim_time_sec])
#shared.csv_update(csvfile, '\t', extra, (traffic_end - traffic_begin).getData(), ping_result.getData())
sim_time_sec = DURATION_SIMTIME_SEC
realtime_sec = (shared.millis() - test_beg_ms) / 1000
traffic_end = traffic.traffic()
ping_result = merge_results(ping_results)
# add data to csv file
extra = (['speedup', 'station_count', 'satellite_count', 'realtime_sec', 'simtime_sec'],
[speedup, len(stations), len(satellites), sim_time_sec, realtime_sec])
shared.csv_update(csvfile, '\t', extra, (traffic_end - traffic_begin).getData(), ping_result)
software.clear(remotes)
network.clear(remotes)
for protocol in ['batman-adv', 'babel', 'batman-adv', 'bmx6', 'bmx7', 'cjdns', 'olsr1', 'olsr2', 'yggdrasil']:
with open(f"{prefix}satellites2-{protocol}.csv", 'w+') as csvfile:
run(protocol, csvfile)
shared.stop_all_terminals()