-
Notifications
You must be signed in to change notification settings - Fork 10
/
matrix.h
568 lines (556 loc) · 15.8 KB
/
matrix.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
#include <iostream>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "loadData.h"
#include <fstream>
#include <sstream>
#include <stack>
#define MAX 1000000
#define MIN -100000
#define MAX_MATRIX_COL 1000
#define MAX_MATRIX_ROW 100
using namespace std;
class Matrix
{
public:
double **mat;
int col,row;
public:
int loadMatrix(Matrix *matrix,dataToMatrix dtm)
{
int i,j;
Data *p;
p=dtm.dataSet->next;
matrix->mat=(double **)malloc(sizeof(double*)*dtm.col);
if(!matrix->mat)
{
cout<<"loadMatrix fail"<<endl;
exit(-1);
}
for(i=0; i<dtm.col&&p!=NULL; i++)
{
matrix->mat[i]=(double *)malloc(sizeof(double)*dtm.row);
if(!matrix->mat[i])
{
cout<<"loadmatrix fail"<<endl;
exit(-1);
}
for(j=0; j<dtm.row; j++)
{
matrix->mat[i][j]=p->attr_double[j];
}
p=p->next;
}
matrix->row=dtm.row;
matrix->col=dtm.col;
return 0;
}
/**
new和malloc的本质区别在于,前者是针对对象而言,无论是基本类型还是类类型,结构体类型都可以看作对象,
使用new是会调用对象的构造函数,初始化对象,即首先得分配内存,后初始化,分配内存这事内部实现可能是调用malloc
而malloc只是分配内存,对于基本类型而言,这是没问题的,后期可以继续初始化,而对于对象而言,malloc只分配内存
不调用构造函数,所以不会对对象进行初始化
**/
int initMatrix(Matrix *matrix,int col,int row)
{
initMatrix(matrix,col,row,0);
}
int initMatrix(Matrix *matrix,int col,int row,double lam)
{
if(col==0||row==0)
{
cout<<"matrix row or col no can 0"<<endl;
exit(-1);
}
matrix->col=col;
matrix->row=row;
try
{
matrix->mat=new double *[col];
}
catch(...)
{
cout<<"initMatrix fail1aaaa"<<endl;
exit(-1);
}
/*
if(!matrix->mat)
{
cout<<"initMatrix fail1"<<endl;
exit(-1);
}
*/
int i=0,j=0;
for(i=0; i<col; i++)
{
try
{
matrix->mat[i]=new double[row];
}
catch(...)
{
cout<<"initMatrix fail1aaaa"<<endl;
exit(-1);
}
/*
if(!matrix->mat[i])
{
cout<<"initMatrix fail2"<<endl;
exit(-1);
}
*/
for(j=0; j<row; j++)
{
matrix->mat[i][j]=0;
if(i==j)
matrix->mat[i][j]=lam;
}
}
return 0;
}
int print(Matrix matrix)
{
int i,j;
for(i=0; i<matrix.col; i++)
{
for(j=0; j<matrix.row; j++)
{
cout<<matrix.mat[i][j]<<" ";;
}
cout<<endl;
}
}
int copy(Matrix matrixA,Matrix *matrixB)
{
if(!matrixB)//还应该考虑a
{
cout<<"matrixB is null"<<endl;
exit(-1);
}
if(matrixB->col!=matrixA.col||matrixB->row!=matrixA.row)
{
cout<<"matrixA matrixB is no "<<endl;
exit(-1);
}
int i,j;
for(i=0; i<matrixA.col; i++)
{
for(j=0; j<matrixA.row; j++)
{
matrixB->mat[i][j]=matrixA.mat[i][j];
}
}
return 0;
}
Matrix getOneRow(Matrix matrix,int iRow)
{
Matrix oneRow;
oneRow.col=matrix.col;
oneRow.row=1;
initMatrix(&oneRow,oneRow.col,oneRow.row);
int i=0;
for(i=0; i<oneRow.col; i++)
{
oneRow.mat[i][0]=matrix.mat[i][iRow-1];
}
return oneRow;
}
Matrix getOneCol(Matrix matrix,int iCol)
{
Matrix oneCol;
oneCol.row=matrix.row;
oneCol.col=1;
initMatrix(&oneCol,oneCol.col,oneCol.row);
int i=0;
for(i=0; i<oneCol.row; i++)
{
oneCol.mat[0][i]=matrix.mat[iCol-1][i];
}
return oneCol;
}
int deleteOneRow(Matrix *matrix,int iRow)
{
if(matrix->row==1)
{
cout<<"matrix is vec"<<endl;
exit(-1);
}
int i,j;
for(i=iRow; i<matrix->row; i++)
{
for(j=0;j<matrix->col;j++)
{
matrix->mat[j][i]=matrix->mat[j][i+1];
}
}
matrix->row--;
return 0;
}
int deleteOneCol(Matrix *matrix,int iCol)
{
if(matrix->col==1)
{
cout<<"matrix is vec"<<endl;
exit(-1);
}
int i,j;
for(i=0; i<matrix->row; i++)
{
for(j=iCol;j<matrix->col;j++)
{
matrix->mat[j][i]=matrix->mat[j+1][i];
}
}
matrix->col--;
return 0;
}
void transposematrix(Matrix matrix,Matrix *matrixT)//矩阵形式的转置
{
if(matrixT->col!=matrix.row||matrixT->row!=matrix.col)
{
cout<<"matrix matrixT is no "<<endl;
exit(-1);
}
int i=0,j=0;
for(i=0; i<matrixT->col; i++)
{
for(j=0; j<matrixT->row; j++)
{
matrixT->mat[i][j]=matrix.mat[j][i];
}
}
}
int addmatrix(Matrix *addMatrix,Matrix matrix1,Matrix matrix2)
{
if(matrix1.col!=matrix2.col||matrix1.row!=matrix2.row||addMatrix->col!=matrix1.col||addMatrix->row!=matrix1.row)
{
cout<<"addMatrix matrix1 matrix2 is no"<<endl;
exit(-1);
}
int i,j;
for(i=0; i<matrix1.col; i++)
{
for(j=0; j<matrix1.row; j++)
{
addMatrix->mat[i][j]=matrix1.mat[i][j]+matrix2.mat[i][j];
}
}
return 0;
}
int submatrix(Matrix *subMatrix,Matrix matrix1,Matrix matrix2)
{
if(matrix1.col!=matrix2.col||matrix1.row!=matrix2.row||subMatrix->col!=matrix1.col||subMatrix->row!=matrix1.row)
{
cout<<"subMatrix matrix1 matrix2 is no"<<endl;
exit(-1);
}
int i,j;
subMatrix->col=matrix1.col;
subMatrix->row=matrix1.row;
for(i=0; i<matrix1.col; i++)
{
for(j=0; j<matrix1.row; j++)
{
subMatrix->mat[i][j]=matrix1.mat[i][j]-matrix2.mat[i][j];
}
}
return 0;
}
int mult(Matrix *mulMatrix,Matrix A, Matrix B)
{
if(A.col!=B.col || A.row!=B.row || mulMatrix->col!=A.col ||mulMatrix->row!=A.row)
{
cout<<"mulMatrix matrix1 matrix2 is no"<<endl;
exit(-1);
}
int i,j;
for(i=0;i<A.col;i++)
{
for(j=0;j<A.row;j++)
{
mulMatrix->mat[i][j]=A.mat[i][j]*B.mat[i][j];
}
}
return 0;
}
int multsmatrix(Matrix *multsMatrix,Matrix matrix1,Matrix matrix2)//矩阵形式的相乘
{
if(matrix1.row!=matrix2.col||multsMatrix->col!=matrix1.col||multsMatrix->row!=matrix2.row)
{
cout<<"multsmatrix error"<<endl;
exit(-1);
}
int i,j,k,l;
for(i=0; i<matrix1.col; i++)
{
for(j=0; j<matrix2.row; j++)
{
multsMatrix->mat[i][j]=0;
}
}
for(i=0; i<matrix1.col; i++)
{
for(j=0; j<matrix2.row; j++)
{
for(k=0; k<matrix1.row; k++)
{
multsMatrix->mat[i][j]+=matrix1.mat[i][k]*matrix2.mat[k][j];
}
}
}
return 0;
}
//行列式
double detmatrix(Matrix matrix)
{
if(matrix.col!=matrix.row)
{
cout<<"matrix det is no"<<endl;
exit(-1);
}
Matrix matrixCopy;
matrixCopy.initMatrix(&matrixCopy,matrix.col,matrix.row);
matrixCopy.copy(matrix,&matrixCopy);
double det=1;
int i=0,j,k;
double max=MIN;
int swap=-1;
double temp;
double aij[MAX_MATRIX_COL][MAX_MATRIX_ROW];//这里用矩阵就更好了
for(k=0; k<matrixCopy.row-1; k++)//k表示第k次消元,一共需要n-1次
{
for(i=0; i<matrixCopy.col; i++)
{
if(matrixCopy.mat[i][k]>max)//每一次消元都是比较第k列的元素,选出第k列中最大的一行
{
swap=i;
}
}//找到第k次列主元消去的最大行的下标
if(swap==-1||matrixCopy.mat[swap][k]==0)
return -1;//最大主元为0
for(j=0; j<matrixCopy.row; j++)
{
temp=matrixCopy.mat[k][j];
matrixCopy.mat[k][j]=matrixCopy.mat[swap][j];
matrixCopy.mat[swap][j]=temp;
}//第k次消元,选出最大的一行是swap行,与第k行交换
for(i=k+1; i<matrixCopy.col; i++)
{
aij[i][k]=matrixCopy.mat[i][k]/matrixCopy.mat[k][k];// 第k次消元,主元素为第k行第k列,把第k行以下的行都进行消元
for(j=k; j<matrixCopy.row; j++)//对于k行以下的每一行的每一列元素都减去主行与消元因子的乘积
{
matrixCopy.mat[i][j]-=aij[i][k]*matrixCopy.mat[k][j];
}
}
}
for(i=0; i<matrixCopy.col; i++)
{
det*=matrixCopy.mat[i][i];
}
cout<<"det="<<det<<endl;
return det;
}
//高斯消元矩阵求逆,特别注意,LU分解不能进行行列式变换
int nimatrix(Matrix *niMatrix,Matrix matrix)
{
if(matrix.col!=matrix.row)
{
cout<<"matrix ni is no "<<endl;
exit(-1);
}
if(detmatrix(matrix)==0)//这里调用求行列式进行了列主元消去改变了参数矩阵,如何传递不改变是一个问题
{
cout<<"matrix det is no so ni is no "<<endl;
exit(-1);
}
int i=0,j,k;
double temp;
Matrix cpMatrix;
Matrix uMatrix;
Matrix lMatrix;
Matrix uniMatrix;
Matrix lniMatrix;
initMatrix(&uniMatrix,matrix.col,matrix.row);
initMatrix(&lniMatrix,matrix.col,matrix.row);
initMatrix(&cpMatrix,matrix.col,matrix.row);
initMatrix(&uMatrix,matrix.col,matrix.row);
initMatrix(&lMatrix,uMatrix.col,uMatrix.row);
copy(matrix,&cpMatrix);
double aij[MAX_MATRIX_COL][MAX_MATRIX_ROW];
for(k=0; k<matrix.row-1; k++)//k表示第k次消元,一共需要n-1次
{
for(i=k+1; i<matrix.col; i++)
{
aij[i][k]=matrix.mat[i][k]/matrix.mat[k][k];// 第k次消元,主元素为第k行第k列,把第k行以下的行都进行消元
for(j=k; j<matrix.row; j++)//对于k行以下的每一行的每一列元素都减去主行与消元因子的乘积
{
matrix.mat[i][j]-=aij[i][k]*matrix.mat[k][j];
}
}
}
copy(matrix,&uMatrix);
cout<<"uMatrix"<<endl;
print(uMatrix);
for(j=0; j<matrix.row; j++)
{
for(i=j+1; i<matrix.col; i++)
{
temp=0;
for(k=0; k<j; k++)
{
temp=lMatrix.mat[i][k]*uMatrix.mat[k][j];
}
lMatrix.mat[i][j]=1/uMatrix.mat[j][j]*(cpMatrix.mat[i][j]-temp);
}
}
for(i=0; i<lMatrix.col; i++)
{
for(j=0; j<lMatrix.row; j++)
{
if(i==j)
lMatrix.mat[i][j]=1;
if(j>i)
lMatrix.mat[i][j]=0;
}
}
cout<<"lMatrix"<<endl;
print(lMatrix);
Matrix multsMatrix;
multsMatrix.initMatrix(&multsMatrix,lMatrix.col,uMatrix.row);
matrix.multsmatrix(&multsMatrix,lMatrix,uMatrix);
cout<<"lu"<<endl;
print(multsMatrix);
//计算u逆
for(j=0; j<uMatrix.row; j++)
{
for(i=j; i>=0; i--)
{
if(i==j)
uniMatrix.mat[i][j]=1/uMatrix.mat[i][j];
else
{
temp=0;
for(k=j; k>i; k--)
{
temp+=uMatrix.mat[i][k]*uniMatrix.mat[k][j];
}
uniMatrix.mat[i][j]=-1/uMatrix.mat[i][i]*temp;
}
}
}
cout<<"uniMatrix"<<endl;
print(uniMatrix);
//计算l逆
for(j=0; j<lMatrix.row; j++)
{
for(i=0; i<lMatrix.col; i++)
{
if(j==i)
lniMatrix.mat[i][j]=1;
else
{
temp=0;
for(k=j; k<i; k++)
{
temp+=(lMatrix.mat[i][k]*lniMatrix.mat[k][j]);
}
lniMatrix.mat[i][j]=-temp;
}
}
}
cout<<"lniMatrix"<<endl;
print(lniMatrix);
multsmatrix(&multsMatrix,uniMatrix,lniMatrix);
cout<<"luni"<<endl;
print(multsMatrix);
copy(multsMatrix,niMatrix);
multsmatrix(&multsMatrix,cpMatrix,*niMatrix);
cout<<"luluni"<<endl;
print(multsMatrix);
copy(cpMatrix,&matrix);
}
int LDL(Matrix x)//矩阵的LDL分解,不知道怎样用于矩阵特征值,特征向量求解
{
Matrix l;
l.initMatrix(&l,x.col,x.row);
Matrix d;
d.initMatrix(&d,x.col,x.row);
int i,j,k;
Matrix temp;
temp.initMatrix(&temp,x.col,x.row);
for(i=0;i<x.col;i++)
{
l.mat[i][i]=1;
for(j=0;j<i;j++)
{
for(k=0;k<j;k++)
{
temp.mat[i][k]=l.mat[i][k]*d.mat[k][k];
temp.mat[i][j]-=temp.mat[i][k]*l.mat[j][k];
}
temp.mat[i][j]=temp.mat[i][j]+x.mat[i][j];
l.mat[i][j]=temp.mat[i][j]/d.mat[j][j];
}
d.mat[i][i]=x.mat[i][i];
for(k=0;k<i;k++)
{
d.mat[i][i]-=temp.mat[i][k]*l.mat[i][k];
}
}
for(i=0;i<x.col;i++)
{
for(j=0;j<x.row;j++)
{
cout<<l.mat[i][j]<<" ";
}
cout<<endl;
}
for(i=0;i<x.col;i++)
{
for(j=0;j<x.row;j++)
{
cout<<d.mat[i][j]<<" ";
}
cout<<endl;
}
}
/**
void Matrix::QR_Schmidt(vector<vector<double>> &Q,vector<vector<double>> &R)
{
int index=0;
for(auto &vec:R)
{
vec[index++]=1;
}
for(int j=2;j<=colSize;j++)
{
double ret;
double retk;
for(int k=1;k<j;k++)
{
ret=dot(getCol(j),getCol(k));
retk=dot(getCol(k),getCol(k));
R[k-1][j-1]=ret/retk;
for(auto &r:mat)
{
r[j-1]=r[j-1]-ret/retk*r[k-1];
}
}
}
for(int j=1;j<=colSize;j++)
{
double b=vecLen(getCol(j));
for(auto &v:R[j-1])
{
v=v*b;
}
for(auto &r:mat)
{
r[j-1]=r[j-1]/b;
}
}
Q=mat;
}
**/
};