-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
35 lines (30 loc) · 1.07 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
from os import name
from flask import Flask, render_template, request
from tensorflow.keras.models import load_model
import pickle
import numpy as np
import json
from tensorflow.keras.preprocessing.sequence import pad_sequences
pickle_open = open("tokenizer.pkl","rb")
tokenizer = pickle.load(pickle_open)
model = load_model("model.h5")
def predict(t):
example = tokenizer.texts_to_sequences([t])
example = pad_sequences(example, maxlen=2)
prediction = model.predict(np.array(example))
predicted_word = np.argmax(prediction)
reverse_word_map = dict(map(reversed, tokenizer.word_index.items())) # https://stackoverflow.com/a/43927939/246508
return reverse_word_map[predicted_word]
app = Flask(__name__)
@app.route("/")
def home():
return render_template("index.html")
@app.route("/after", methods=["POST"])
def after():
text =(json.loads(request.data))
finaltext = text["text"]
print(finaltext)
next = predict(f"{finaltext}")
return f"<h1>{next}</h1>"
if __name__ == '__main__':
app.run(debug=True)