-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlayer_norm.py
68 lines (54 loc) · 2.2 KB
/
layer_norm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# Copyright 2021 DeepMind Technologies Limited.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Model layer normalisation and dropout utilities."""
import sonnet as snt
import tensorflow.compat.v2 as tf
class ResidualDropoutWrapper(snt.Module):
"""Wrapper that applies residual connections, dropout and layer norm."""
def __init__(self, layer, dropout_rate, apply_layer_norm=True, name=None):
"""Creates the Wrapper Class.
Args:
layer: module to wrap.
dropout_rate: dropout rate. A rate of 0. will turn off dropout.
apply_layer_norm: (default True) whether to apply layer norm after
residual.
name: name of the module.
"""
super(ResidualDropoutWrapper, self).__init__(name=name)
self._layer = layer
self._dropout_rate = dropout_rate
self._apply_layer_norm = apply_layer_norm
if self._apply_layer_norm:
self._layer_norm = snt.LayerNorm(
axis=-1, create_scale=True, create_offset=True)
def __call__(self, inputs, *args, **kwargs):
"""Returns the result of the residual dropout computation.
Args:
inputs: inputs to the main module.
*args: Additional arguments to inner layer.
**kwargs: Additional named arguments to inner layer.
"""
# Apply main module.
outputs = self._layer(inputs, *args, **kwargs)
# Dropout before residual.
if kwargs.get('is_training', False):
outputs = tf.nn.dropout(outputs, rate=self._dropout_rate)
if 'query_inputs' in kwargs:
outputs += kwargs['query_inputs']
else:
outputs += inputs
if self._apply_layer_norm:
outputs = self._layer_norm(outputs)
return outputs