-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathperformance_metrics.py
125 lines (99 loc) · 5.63 KB
/
performance_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
from pathlib import Path
import numpy as np
import pandas as pd
from IPython.core.display_functions import display
from jinja2 import Environment, FileSystemLoader
from krippendorff import krippendorff
from matplotlib import pyplot as plt
from pandas import DataFrame, DataFrame as df
from pandas.io.formats.style import Styler
from sklearn.metrics import recall_score, precision_score, f1_score, accuracy_score, confusion_matrix
def display_performance_metrics(trues, predicted, probs, class_list):
class_metrics, general_metrics, roc, conf_matrix = calculate_performance_metrics(trues, predicted, probs,
class_list)
formatted_tables = format_tables(class_metrics, general_metrics, conf_matrix)
for table in formatted_tables:
display(table)
if roc is not None:
display(roc)
def save_performance_metrics(trues, predicted, probs, class_list, folder: Path):
class_metrics, general_metrics, roc, conf_matrix = calculate_performance_metrics(trues, predicted, probs,
class_list)
class_metrics_f, general_metrics_f, conf_matrix_f = format_tables(class_metrics, general_metrics, conf_matrix)
roc_path = 'roc.svg'
if roc is not None:
roc_auc = general_metrics.loc['auc', 'score']
plt.title('Receiver Operating Characteristic')
plt.plot(roc['fpr'], roc['tpr'], 'b', label='AUC = %0.2f' % roc_auc)
plt.legend(loc='lower right')
plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.savefig(folder / roc_path)
html_output = make_html(class_metrics_f, conf_matrix_f, general_metrics_f, roc_path)
with open(folder / 'performance_metrics.html', 'w') as f:
f.write(html_output)
with open(folder / 'performance_metrics.csv', 'w') as f:
f.write(general_metrics.to_csv())
def make_html(class_metrics_f, conf_matrix_f, general_metrics_f, roc_path):
env = Environment(loader=FileSystemLoader('disgust/templates'))
template = env.get_template('template.html')
data = {'cards': [
{'title': 'General metrics', 'content': general_metrics_f.to_html()},
{'title': 'Confusion matrix', 'content': conf_matrix_f.to_html()},
{'title': 'Class metrics', 'content': class_metrics_f.to_html()},
{'title': 'ROC', 'content': f'<img src="{roc_path}" />'}
]}
html_output = template.render(data)
return html_output
def format_tables(class_metrics: DataFrame, general_metrics: DataFrame, conf_matrix: DataFrame) -> tuple[Styler]:
formatted_class_metrics, formatted_general_metrics = [
table.style.background_gradient(vmin=0, vmax=1, cmap='Greys_r').format('{:.2f}') for table in
[class_metrics, general_metrics]]
formatted_conf_matrix = conf_matrix.style.background_gradient(
vmin=0, vmax=conf_matrix.sum().sum(), cmap='Greys_r').format(
lambda c: f'{c} ({100 * c / conf_matrix.sum().sum():.0f}%)')
return formatted_class_metrics, formatted_general_metrics, formatted_conf_matrix
def print_performance_metrics(trues, predicted, probs, class_list):
class_metrics, general_metrics, roc, conf_matrix = calculate_performance_metrics(trues, predicted, probs,
class_list)
print(class_metrics.round(2))
print(general_metrics.round(2))
# if roc is not None:
# print(roc)
print(conf_matrix)
def calculate_performance_metrics(trues, predicted, probs, class_list):
"""
Calculates some performance metrics given a list of ground truth values and a list of predictions to be compared.
:param trues: list of ground truths
:param predicted: list of model predictions
:param probs: list of model predicted probalities
:param class_list: the set of all possible labels
:return: a dataframe with class level metrics and a dataframe with general metrics and a one with ROC values
"""
class_metrics_data = {'recall': recall_score(trues, predicted, average=None),
'precision': precision_score(trues, predicted, average=None),
'f1': f1_score(trues, predicted, average=None)}
class_metrics = df(class_metrics_data, index=class_list)
i_trues = [list(class_list).index(label) for label in trues]
i_predicted = [list(class_list).index(label) for label in predicted]
i_set = np.unique(i_trues + i_predicted)
if probs is not None:
from sklearn.metrics import roc_auc_score, roc_curve
fpr, tpr, thresholds = roc_curve(y_true=trues, y_score=probs, pos_label='pathogen disgust')
roc = df({'fpr': fpr, 'tpr': tpr})
roc_auc = (roc_auc_score(trues, probs))
else:
roc = None
roc_auc = None
general_metrics_data = [roc_auc,
accuracy_score(trues, predicted),
krippendorff.alpha(reliability_data=[i_trues, i_predicted],
level_of_measurement='nominal', value_domain=i_set)]
general_metrics = df(general_metrics_data, index=['auc', 'accuracy', 'krippendorff alpha'], columns=['score'])
conf_matrix = pd.DataFrame(confusion_matrix(trues, predicted),
index=pd.MultiIndex.from_product([['True:'], class_list]),
columns=pd.MultiIndex.from_product([['Predicted:'], class_list]))
return class_metrics, general_metrics[general_metrics['score'].notna()], roc, conf_matrix