-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample_frames.py
244 lines (205 loc) · 7.86 KB
/
example_frames.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
# coding: utf-8
# In[1]:
#imports
import cv2
import numpy as np
from os import listdir
from os.path import isfile, join
import glob
import os
import time
import math
from collections import defaultdict
# In[2]:
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
def nothing(x):
pass
# In[ ]:
cv2.destroyAllWindows()
# In[3]:
visualize = True
def detect(img):
img_gs = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
img_gs = clahe.apply(img_gs)
img_gs_f = np.float32(img_gs)
dst = cv2.cornerHarris(img_gs_f,2,3,0.04)
#result is dilated for marking the corners, not important
dst = cv2.dilate(dst,None)
coords = np.transpose(np.nonzero(dst>0.01*dst.max()))
# Threshold for an optimal value, it may vary depending on the image.
#if visualize:
#img[dst>0.01*dst.max()]=[0,0,255]
#print coords
return (coords,img_gs_f, img_gs)
def dist2(a, b):
return (a[0]-b[0])*(a[0]-b[0]) + (a[1]-b[1])*(a[1]-b[1])
def subimage(image, center, ts, tc, width, height):
v_x = (tc, ts)
v_y = (-ts,tc)
s_x = center[0] - v_x[0] * (width / 2) - v_y[0] * (height / 2)
s_y = center[1] - v_x[1] * (width / 2) - v_y[1] * (height / 2)
mapping = np.array([[v_x[0],v_y[0], s_x],
[v_x[1],v_y[1], s_y]])
return cv2.warpAffine(
image,
mapping,
(int(width), int(height)),
flags=cv2.WARP_INVERSE_MAP,
borderMode=cv2.BORDER_REPLICATE)
#get image of a line between two points with given width
def subimage2(image, c1, c2, width):
w = c1[0]-c2[0]
h = c1[1]-c2[1]
center = topoint((c1+c2)/2)
c = math.sqrt(dist2(c1, c2))
ts = -w/c
tc = h/c
#print (topoint(c1), topoint(c2), center, ts, tc, w, h, c)
return subimage(image, center, ts, tc, width, c)
def circleCoords(coords, mask_zero, radius = 2, maxSize = 22):
mask = mask_zero[:,:,0].copy()
for c in coords:
cv2.circle(mask, (c[1],c[0]), radius,255,-1)
ret, markers, stats, centroids = cv2.connectedComponentsWithStats(mask)
if visualize:#for visualization only
max_ = np.amax(markers)
markers *= 255/max_
markers = markers.astype(np.uint8)
markers_col = cv2.applyColorMap(markers, cv2.COLORMAP_JET)
candidates = []
for (i,c) in enumerate(centroids):
if (stats[i,cv2.CC_STAT_WIDTH] < maxSize and stats[i,cv2.CC_STAT_HEIGHT] < maxSize and
(stats[i,cv2.CC_STAT_WIDTH] > 4*radius or stats[i,cv2.CC_STAT_HEIGHT] >4*radius)):
if visualize:
cv2.circle(markers_col, (int(c[0]),int(c[1])), maxSize/2,(0,0,255),1)
candidates += [c]
if visualize:#for visualization only
cv2.imshow('markers_col', markers_col)
return candidates
def topoint(x):
return (int(x[0]),int(x[1]))
def findGraph(candidates, img_gs, max_mean=40):
mask = np.zeros_like(img_gs)
graph = defaultdict(lambda:[])
if visualize:
cv2.imshow('clahe', img_gs)
for (i,c) in enumerate(candidates):
for j in range(i):
sub = subimage2(img_gs, c, candidates[j],10)
min_ = np.amin(sub, axis = 1)
if min_.mean() < max_mean:
if visualize:
cv2.line(mask, topoint(c), topoint(candidates[j]),255,1)
graph[i] += [j]
graph[j] += [i]
if visualize:
cv2.imshow('graph', mask)
return graph, mask
#http://stackoverflow.com/a/246063
def CrossProductZ(a,b):
return a[0] * b[1] - a[1] * b[0]
def Orientation(a, b, c):
return CrossProductZ(a, b) + CrossProductZ(b, c) + CrossProductZ(c, a)
def OrientationC(g, a, b, c):
return Orientation(g[a],g[b],g[c])
def add1(a):
return np.append(a,[1])
def findHouse(graph, mask_, img, candidates, primary=5, secondary=4, name='_X', color=(0,0,255),img_gs=None):
if visualize:
mask = mask_.copy()
for i in graph: #subgraph localization
if len(graph[i]) != 2:
continue
[a,b] = graph[i]
if len(graph[a]) != primary or len(graph[a]) != primary:
continue
ok = 1
for c in graph[a]:
if c != b and c!= i and len(graph[c]) != secondary:
ok = 0
break
if ok == 0:
continue
if OrientationC(candidates,i,a,b)<0:
(a,b) = (b,a)
for x in [a]+graph[a]:
for y in graph[x]:
if x<y:
if visualize:
cv2.line(mask, topoint(candidates[x]), topoint(candidates[y]),255,3)
cv2.line(img, topoint(candidates[x]), topoint(candidates[y]),color,1)
used = {i: 1, a:1, b:1}
x = 0
s = 0
if name == '_X':#find middle point
for j in filter(lambda x: x not in used, graph[a]):
s_ = 0
for k in graph[j]:
s_ += dist2(candidates[j],candidates[k])
if x == 0 or s_ < s:
x = j
s = s_
used[x] = 1
cd = filter(lambda x: x not in used, graph[a])
if len(cd) != 2:
#print "cd has len %d" %len(cd)
return (None, None)
[c,d] = cd
if OrientationC(candidates,x,c,d)<0:
(c,d) = (d,c)
points_imdg = [candidates[__] for __ in [a,b,c,d]]#,x,i
if name == '_X':
points_img = [candidates[__] for __ in [a,b,c,d,x]]#,x,i
new_3d = np.float32([[100,0,0],[0,0,0],[100,100,0],[0,100,0],[50,50,0]])
else:
points_img = [candidates[__] for __ in [a,b,c,d]]#,x,i
new_3d = np.float32([[100,0,0],[0,0,0],[100,100,0],[0,100,0]])
p_img = np.array(points_img, np.float32)
cv2.cornerSubPix(img_gs,p_img,(11,11),(-1,-1),criteria)
#cv2.circle(img, topoint(p_img[5]), 5, (255,0,0),-1)
cv2.circle(img, topoint(p_img[0]), 5, (0,0,255),-1)#tr
cv2.circle(img, topoint(p_img[1]), 5, (0,255,0),-1)#tl
#cv2.circle(img, topoint(p_img[4]), 5, (255,255,255),-1)
cv2.circle(img, topoint(p_img[2]), 5, (0,255,255),-1)#br
cv2.circle(img, topoint(p_img[3]), 5, (255,0,255),-1)#bl
return draw3d(img,p_img,new_3d)
#
return (None,None)
goal_3d = np.float32([[50,50,-1]])
def draw3d(img, pts, new_3d):
fx = 0.5 + cv2.getTrackbarPos('focal', 'dst') / 50.0
h, w = img.shape[:2]
K = np.float64([[fx*w, 0, 0.5*(w-1)],
[0, fx*w, 0.5*(h-1)],
[0.0,0.0, 1.0]])
dist_coef = np.zeros(4)
ret, rvec, tvec = cv2.solvePnP(new_3d, pts, K, dist_coef)
goal_3d[0,2] = -1 * cv2.getTrackbarPos('height', 'dst')
verts = cv2.projectPoints(goal_3d, rvec, tvec, K, dist_coef)[0].reshape(-1, 2)
cv2.circle(img, topoint(verts[0]), 5, (255,255,255),-1)
for p in pts:
cv2.line(img, topoint(p), topoint(verts[0]), (255,255,255),2, -1)
def detectHouse(frame, house_type='_X'):
(coords_,img_gs_f, img_gs) = detect(frame)
candidates = circleCoords(coords_, np.zeros_like(frame))
graph, mask = findGraph(candidates, img_gs,max_mean=cv2.getTrackbarPos('max_mean', 'dst'))
findHouse(graph, mask, frame, candidates, 5, 4, '_X', img_gs=img_gs)
#findHouse(graph, mask, frame, candidates, 3, 2, '_N', img_gs=img_gs)
cv2.imshow('dst',frame)
#scanned pictures example
mypath = 'frames'
cv2.namedWindow('dst')
cv2.createTrackbar('focal', 'dst', 25, 50, nothing)
cv2.createTrackbar('height', 'dst', 50, 200, nothing)
cv2.createTrackbar('max_mean', 'dst', 40, 200, nothing)
for f in glob.glob(os.path.join(mypath,'*.jpg')):
frame_orig = cv2.imread(f)
while True:
frame = frame_orig.copy()
detectHouse(frame)
key = cv2.waitKey(100)
if key & 0xFF == ord('q') or key & 0xFF == ord(' '):
break
if key & 0xFF == ord('q'):
break