-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathattacks.py
404 lines (362 loc) · 17.2 KB
/
attacks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
"""
Author: Moustafa Alzantot ([email protected])
"""
import numpy as np
import glove_utils
import pickle
class EntailmentAttack(object):
def __init__(self, model, dist_mat, pop_size=4, max_iters=10, n1=8, n2=4):
self.model = model
self.dist_mat = dist_mat
self.n1 = n1
self.n2 = n2
self.max_iters = max_iters
self.pop_size = pop_size
self.temp = 1.0
def do_replace(self, x_cur, pos, new_word):
x_new = x_cur.copy()
x_new[pos] = new_word
return x_new
def generate_population(self, x_orig, neigbhours_list, w_select_probs, target, pop_size):
return [self.perturb(x_orig, x_orig, neigbhours_list, w_select_probs, target) for _ in range(pop_size)]
def perturb(self, x_cur, x_orig, neighbours_list, w_select_probs, target):
rand_idx = np.random.choice(
w_select_probs.shape[0], 1, p=w_select_probs)[0]
# while x_cur[rand_idx] != x_orig[rand_idx]:
# rand_idx = np.random.choice(x_cur.shape[0], 1, p=w_select_probs)[0]
new_w = np.random.choice(neighbours_list[rand_idx])
return self.do_replace(x_cur, rand_idx, new_w)
def crossover(self, x1, x2):
x_new = x1.copy()
for i in range(len(x1)):
if np.random.uniform() < 0.5:
x_new[i] = x2[i]
return x_new
def attack(self, x_orig, target):
x1_adv = x_orig[0].copy().ravel()
x2_adv = x_orig[1].copy().ravel()
x1_orig = x_orig[0].ravel()
x2_orig = x_orig[1].ravel()
x1_len = np.sum(np.sign(x1_adv))
x2_len = np.sum(np.sign(x2_adv))
tmp = [glove_utils.pick_most_similar_words(x2_adv[i], self.dist_mat, 50, 0.5) if x2_adv[i] != 0 else ([], [])
for i in range(len(x2_adv))]
neighbours_list = [x[0] for x in tmp]
neighbours_dist = [x[1] for x in tmp]
neigbhours_len = [len(x) for x in neighbours_list]
w_select_probs = neigbhours_len / np.sum(neigbhours_len)
tmp = [glove_utils.pick_most_similar_words(x2_adv[i], self.dist_mat, self.n1, 0.5) if x2_adv[i] != 0 else ([], [])
for i in range(len(x2_adv))]
neighbours_list = [x[0] for x in tmp]
neighbours_dist = [x[1] for x in tmp]
pop = np.array(self.generate_population(
x2_adv, neighbours_list, w_select_probs, target, self.pop_size))
pop = pop.reshape(self.pop_size, -1)
# print(pop)
pop_x1 = np.tile(x1_adv, (self.pop_size, 1, 1)
).reshape(self.pop_size, -1)
for iter_idx in range(self.max_iters):
pop_preds = self.model.predict([pop_x1, pop])
pop_scores = pop_preds[:, target]
pop_ranks = np.argsort(pop_scores)[::-1]
top_attack = pop_ranks[0]
if np.argmax(pop_preds[top_attack, :]) == target:
return x1_orig, pop[top_attack]
print(iter_idx, ' : ', np.max(pop_scores))
logits = np.exp(pop_scores / self.temp)
pop_select_probs = logits / np.sum(logits)
elite = [pop[top_attack]]
parent1_idx = np.random.choice(
self.pop_size, size=self.pop_size-1, p=pop_select_probs)
parent2_idx = np.random.choice(
self.pop_size, size=self.pop_size-1, p=pop_select_probs)
childs = [self.crossover(pop[parent1_idx[i]],
pop[parent2_idx[i]])
for i in range(self.pop_size-1)]
childs = [self.perturb(
x, x2_orig, neighbours_list, w_select_probs, target) for x in childs]
pop = elite + childs
pop = np.array(pop)
return None
class GeneticAtack(object):
def __init__(self, sess, model, batch_model,
neighbour_model,
dataset, dist_mat,
skip_list,
lm,
pop_size=20, max_iters=100,
n1=20, n2=5,
use_lm=True, use_suffix=False):
self.dist_mat = dist_mat
self.dataset = dataset
self.dict = self.dataset.dict
self.inv_dict = self.dataset.inv_dict
self.skip_list = skip_list
self.model = model
self.batch_model = batch_model
self.neighbour_model = neighbour_model
self.sess = sess
self.max_iters = max_iters
self.pop_size = pop_size
self.lm = lm
self.top_n = n1 # similar words
self.top_n2 = n2
self.use_lm = use_lm
self.use_suffix = use_suffix
self.temp = 0.3
def do_replace(self, x_cur, pos, new_word):
x_new = x_cur.copy()
x_new[pos] = new_word
return x_new
def select_best_replacement(self, pos, x_cur, x_orig, target, replace_list):
""" Select the most effective replacement to word at pos (pos)
in (x_cur) between the words in replace_list """
new_x_list = [self.do_replace(
x_cur, pos, w) if x_orig[pos] != w and w != 0 else x_cur for w in replace_list]
new_x_preds = self.neighbour_model.predict(
self.sess, np.array(new_x_list))
# Keep only top_n
# replace_list = replace_list[:self.top_n]
#new_x_list = new_x_list[:self.top_n]
#new_x_preds = new_x_preds[:self.top_n,:]
new_x_scores = new_x_preds[:, target]
orig_score = self.model.predict(
self.sess, x_cur[np.newaxis, :])[0, target]
new_x_scores = new_x_scores - orig_score
# Eliminate not that clsoe words
new_x_scores[self.top_n:] = -10000000
if self.use_lm:
prefix = ""
suffix = None
if pos > 0:
prefix = self.dataset.inv_dict[x_cur[pos-1]]
#
orig_word = self.dataset.inv_dict[x_orig[pos]]
if self.use_suffix and pos < x_cur.shape[0]-1:
if (x_cur[pos+1] != 0):
suffix = self.dataset.inv_dict[x_cur[pos+1]]
# print('** ', orig_word)
replace_words_and_orig = [
self.dataset.inv_dict[w] if w in self.dataset.inv_dict else 'UNK' for w in replace_list[:self.top_n]] + [orig_word]
# print(replace_words_and_orig)
replace_words_lm_scores = self.lm.get_words_probs(
prefix, replace_words_and_orig, suffix)
# print(replace_words_lm_scores)
# for i in range(len(replace_words_and_orig)):
# print(replace_words_and_orig[i], ' -- ', replace_words_lm_scores[i])
# select words
new_words_lm_scores = np.array(replace_words_lm_scores[:-1])
# abs_diff_lm_scores = np.abs(new_words_lm_scores - replace_words_lm_scores[-1])
# rank_replaces_by_lm = np.argsort(abs_diff_lm_scores)
rank_replaces_by_lm = np.argsort(-new_words_lm_scores)
filtered_words_idx = rank_replaces_by_lm[self.top_n2:]
# print(filtered_words_idx)
new_x_scores[filtered_words_idx] = -10000000
if (np.max(new_x_scores) > 0):
return new_x_list[np.argsort(new_x_scores)[-1]]
return x_cur
def perturb(self, x_cur, x_orig, neigbhours, neighbours_dist, w_select_probs, target):
# Pick a word that is not modified and is not UNK
x_len = w_select_probs.shape[0]
# to_modify = [idx for idx in range(x_len) if (x_cur[idx] == x_orig[idx] and self.inv_dict[x_cur[idx]] != 'UNK' and
# self.dist_mat[x_cur[idx]][x_cur[idx]] != 100000) and
# x_cur[idx] not in self.skip_list
# ]
rand_idx = np.random.choice(x_len, 1, p=w_select_probs)[0]
while x_cur[rand_idx] != x_orig[rand_idx] and np.sum(x_orig != x_cur) < np.sum(np.sign(w_select_probs)):
# The conition above has a quick hack to prevent getting stuck in infinite loop while processing too short examples
# and all words `excluding articles` have been already replaced and still no-successful attack found.
# a more elegent way to handle this could be done in attack to abort early based on the status of all population members
# or to improve select_best_replacement by making it schocastic.
rand_idx = np.random.choice(x_len, 1, p=w_select_probs)[0]
# src_word = x_cur[rand_idx]
# replace_list,_ = glove_utils.pick_most_similar_words(src_word, self.dist_mat, self.top_n, 0.5)
replace_list = neigbhours[rand_idx]
if len(replace_list) < self.top_n:
replace_list = np.concatenate(
(replace_list, np.zeros(self.top_n - replace_list.shape[0])))
return self.select_best_replacement(rand_idx, x_cur, x_orig, target, replace_list)
def generate_population(self, x_orig, neigbhours_list, neighbours_dist, w_select_probs, target, pop_size):
return [self.perturb(x_orig, x_orig, neigbhours_list, neighbours_dist, w_select_probs, target) for _ in range(pop_size)]
def crossover(self, x1, x2):
x_new = x1.copy()
for i in range(len(x1)):
if np.random.uniform() < 0.5:
x_new[i] = x2[i]
return x_new
def attack(self, x_orig, target, max_change=0.4):
x_adv = x_orig.copy()
x_len = np.sum(np.sign(x_orig))
# Neigbhours for every word.
tmp = [glove_utils.pick_most_similar_words(
x_orig[i], self.dist_mat, 50, 0.5) for i in range(x_len)]
neigbhours_list = [x[0] for x in tmp]
neighbours_dist = [x[1] for x in tmp]
neighbours_len = [len(x) for x in neigbhours_list]
for i in range(x_len):
if (x_adv[i] < 27):
# To prevent replacement of words like 'the', 'a', 'of', etc.
neighbours_len[i] = 0
w_select_probs = neighbours_len / np.sum(neighbours_len)
tmp = [glove_utils.pick_most_similar_words(
x_orig[i], self.dist_mat, self.top_n, 0.5) for i in range(x_len)]
neigbhours_list = [x[0] for x in tmp]
neighbours_dist = [x[1] for x in tmp]
pop = self.generate_population(
x_orig, neigbhours_list, neighbours_dist, w_select_probs, target, self.pop_size)
for i in range(self.max_iters):
# print(i)
pop_preds = self.batch_model.predict(self.sess, np.array(pop))
pop_scores = pop_preds[:, target]
print('\t\t', i, ' -- ', np.max(pop_scores))
pop_ranks = np.argsort(pop_scores)[::-1]
top_attack = pop_ranks[0]
logits = np.exp(pop_scores / self.temp)
select_probs = logits / np.sum(logits)
if np.argmax(pop_preds[top_attack, :]) == target:
return pop[top_attack]
elite = [pop[top_attack]] # elite
# print(select_probs.shape)
parent1_idx = np.random.choice(
self.pop_size, size=self.pop_size-1, p=select_probs)
parent2_idx = np.random.choice(
self.pop_size, size=self.pop_size-1, p=select_probs)
childs = [self.crossover(pop[parent1_idx[i]],
pop[parent2_idx[i]])
for i in range(self.pop_size-1)]
childs = [self.perturb(
x, x_orig, neigbhours_list, neighbours_dist, w_select_probs, target) for x in childs]
pop = elite + childs
return None
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# % Baselines
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
class PerturbSentBaseline(object):
def __init__(self, sess, model, batch_model, dataset, dist_mat,
lm, n1=20, n2=5, use_lm=True):
self.sess = sess
self.model = model
self.batch_model = batch_model
self.dataset = dataset
self.dict = self.dataset.dict
self.inv_dict = self.dataset.inv_dict
self.dist_mat = dist_mat
self.lm = lm
self.n1 = n1
self.n2 = n2
self.top_n = n1 # similar words
self.top_n2 = n2
self.use_lm = use_lm
self.use_lm = use_lm
def do_replace(self, x_cur, pos, new_word):
x_new = x_cur.copy()
x_new[pos] = new_word
return x_new
def select_best_replacement(self, pos, x_cur, x_orig, target, replace_list):
""" Select the most effective replacement to word at pos (pos)
in (x_cur) between the words in replace_list """
new_x_list = [self.do_replace(
x_cur, pos, w) if x_orig[pos] != w else x_cur for w in replace_list]
new_x_preds = self.batch_model.predict(self.sess, np.array(new_x_list))
# Keep only top_n
# replace_list = replace_list[:self.top_n]
#new_x_list = new_x_list[:self.top_n]
#new_x_preds = new_x_preds[:self.top_n,:]
new_x_scores = new_x_preds[:, target]
orig_score = self.model.predict(
self.sess, x_cur[np.newaxis, :])[0, target]
new_x_scores = new_x_scores - orig_score
# Eliminate not that clsoe words
new_x_scores[self.top_n:] = -10000000
if self.use_lm:
prefix = ""
if pos > 0:
prefix = self.dataset.inv_dict[x_cur[pos-1]]
#
orig_word = self.dataset.inv_dict[x_orig[pos]]
# print('** ', orig_word)
replace_words_and_orig = [
self.dataset.inv_dict[w] if w in self.dataset.inv_dict else 'UNK' for w in replace_list[:self.top_n]] + [orig_word]
# print(replace_words_and_orig)
replace_words_lm_scores = self.lm.get_words_probs(
prefix, replace_words_and_orig)
# print(replace_words_lm_scores)
# for i in range(len(replace_words_and_orig)):
# print(replace_words_and_orig[i], ' -- ', replace_words_lm_scores[i])
# select words
new_words_lm_scores = np.array(replace_words_lm_scores[:-1])
abs_diff_lm_scores = np.abs(
new_words_lm_scores - replace_words_lm_scores[-1])
rank_replaces_by_lm = np.argsort(abs_diff_lm_scores)
filtered_words_idx = rank_replaces_by_lm[self.top_n2:]
# print(filtered_words_idx)
new_x_scores[filtered_words_idx] = -10000000
if (np.max(new_x_scores) > 0):
return new_x_list[np.argsort(new_x_scores[:, 0])[-1]]
return x_cur
def perturb(self, x_cur, pos, x_orig, target):
# perturb a word that is in given position.
x_len = np.sum(np.sign(x_cur))
if pos % 50 == 0:
print(' --- {} / {} '.format(pos, x_len))
assert pos < x_len, "invalid position"
src_word = x_cur[pos]
replace_list, _ = glove_utils.pick_most_similar_words(
src_word, self.dist_mat, 60)
replace_list = [w if w != 0 else src_word for w in replace_list]
return self.select_best_replacement(pos, x_cur, x_orig, target, replace_list)
def attack(self, x_orig, target):
x_adv = x_orig.copy()
# Pick a word that is not modified and is not UNK
x_len = np.sum(np.sign(x_adv))
print('Document length = {}'.format(x_len))
for i in range(x_len):
orig_w = x_adv[i]
x_new = self.perturb(x_adv, i, x_orig, target)
model_pred = self.model.predict(self.sess, x_new[np.newaxis, :])[0]
if np.argmax(model_pred) == target:
return x_adv
x_adv[i] = orig_w
return None
class GreedyAttack(object):
def __init__(self, sess, model, dataset, dist_mat, lm):
self.dist_mat = dist_mat
self.sess = sess
self.dataset = dataset
self.model = model
self.lm = lm
def attack(self, x_orig, target, max_change=0.4):
x_adv = x_orig.copy()
doc_len = np.sum(np.sign(x_orig))
num_updates = 0
while ((num_updates / doc_len) < max_change):
# pick some word
W = [] # Set of candiaate updates
list_x_new = []
for i, x in enumerate(x_adv):
# for each word in x_adv
if x != self.dataset.dict["UNK"]:
# skip the UNK
x_list, _ = glove_utils.pick_most_similar_words(
x, self.dist_mat)
# TODO(malzantot) Score words in x_ based on the language model
# Add the selected word to the W list
# TODO(malzantot): check selected word is not equal to the original word.
for j in range(len(x_list)):
if x_list[j] != x_orig[i]:
W.append((i, x_list[0]))
x_new = x_adv.copy()
x_new[i] = x_list[j]
# print(self.inv_dict[x_orig[i]], ' -> ', self.inv_dict[x_new[i]])
list_x_new.append(x_new)
break
x_new_pred_probs = np.array(
[self.model.predict(self.sess, x[np.newaxis, :])[0] for x in list_x_new])
x_new_preds = np.argmax(x_new_pred_probs, axis=1)
x_new_scores = x_new_pred_probs[:, target]
top_attack = np.argsort(x_new_scores)[-1]
x_adv = list_x_new[top_attack]
num_updates += 1
if x_new_preds[top_attack] == target:
return x_adv
return None