-
Notifications
You must be signed in to change notification settings - Fork 600
/
Copy pathneuralNetwork.py
109 lines (97 loc) · 4.04 KB
/
neuralNetwork.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import torch
import numpy as np
import cv2
import pafy
from time import time
class PencilDetection:
"""
Class implements Yolo5 model to make inferences on a youtube video using Opencv2.
"""
def __init__(self, url, out_file):
"""
Initializes the class with youtube url and output file.
:param url: Has to be as youtube URL,on which prediction is made.
:param out_file: A valid output file name.
"""
self._URL = url
self.model = self.load_model()
self.classes = self.model.names
self.out_file = out_file
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
print("\n\nDevice Used:",self.device)
def get_video_from_url(self):
"""
Creates a new video streaming object to extract video frame by frame to make prediction on.
:return: opencv2 video capture object, with lowest quality frame available for video.
"""
play = pafy.new(self._URL).streams[-1]
assert play is not None
return cv2.VideoCapture(play.url)
def load_model(self):
"""
Loads Yolo5 model from pytorch hub.
:return: Trained Pytorch model.
"""
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
return model
def score_frame(self, frame):
"""
Takes a single frame as input, and scores the frame using yolo5 model.
:param frame: input frame in numpy/list/tuple format.
:return: Labels and Coordinates of objects detected by model in the frame.
"""
self.model.to(self.device)
frame = [frame]
results = self.model(frame)
labels, cord = results.xyxyn[0][:, -1], results.xyxyn[0][:, :-1]
return labels, cord
def class_to_label(self, x):
"""
For a given label value, return corresponding string label.
:param x: numeric label
:return: corresponding string label
"""
return self.classes[int(x)]
def plot_boxes(self, results, frame):
"""
Takes a frame and its results as input, and plots the bounding boxes and label on to the frame.
:param results: contains labels and coordinates predicted by model on the given frame.
:param frame: Frame which has been scored.
:return: Frame with bounding boxes and labels ploted on it.
"""
labels, cord = results
n = len(labels)
x_shape, y_shape = frame.shape[1], frame.shape[0]
for i in range(n):
row = cord[i]
if row[4] >= 0.2:
x1, y1, x2, y2 = int(row[0]*x_shape), int(row[1]*y_shape), int(row[2]*x_shape), int(row[3]*y_shape)
bgr = (0, 255, 0)
cv2.rectangle(frame, (x1, y1), (x2, y2), bgr, 2)
cv2.putText(frame, self.class_to_label(labels[i]), (x1, y1), cv2.FONT_HERSHEY_SIMPLEX, 0.9, bgr, 2)
return frame
def __call__(self):
"""
This function is called when class is executed, it runs the loop to read the video frame by frame,
and write the output into a new file.
:return: void
"""
player = self.get_video_from_url()
assert player.isOpened()
x_shape = int(player.get(cv2.CAP_PROP_FRAME_WIDTH))
y_shape = int(player.get(cv2.CAP_PROP_FRAME_HEIGHT))
four_cc = cv2.VideoWriter_fourcc(*"MJPG")
out = cv2.VideoWriter(self.out_file, four_cc, 20, (x_shape, y_shape))
while True:
start_time = time()
ret, frame = player.read()
assert ret
results = self.score_frame(frame)
frame = self.plot_boxes(results, frame)
end_time = time()
fps = 1/np.round(end_time - start_time, 3)
print(f"Frames Per Second : {fps}")
out.write(frame)
# Create a new object and execute.
detection = PencilDetection("https://www.youtube.com/watch?v=EXUQnLyc3yE", "video.avi")
detection()