-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathF5TTS.py
556 lines (494 loc) · 18.1 KB
/
F5TTS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
from pathlib import Path
import os.path
from .Install import Install
import subprocess
import wave
import math
import torch
import torchaudio
import hashlib
import folder_paths
import tempfile
import soundfile as sf
import sys
import numpy as np
import re
import io
from comfy.utils import ProgressBar
import comfy
from cached_path import cached_path
f5tts_path = os.path.join(Install.f5TTSPath, "src")
sys.path.insert(0, f5tts_path)
from f5_tts.model import DiT,UNetT # noqa E402
from f5_tts.infer.utils_infer import ( # noqa E402
load_model,
load_vocoder,
preprocess_ref_audio_text,
infer_process,
)
sys.path.remove(f5tts_path)
Install.check_install()
class F5TTSCreate:
voice_reg = re.compile(r"\{([^\}]+)\}")
model_types = ["F5", "F5-HI", "F5-JP", "F5-FR", "E2"]
vocoder_types = ["vocos", "bigvgan"]
tooltip_seed = "Seed. -1 = random"
tooltip_speed = "Speed. >1.0 slower. <1.0 faster"
def get_model_types():
model_types = F5TTSCreate.model_types[:]
models_path = folder_paths.get_folder_paths("checkpoints")
for model_path in models_path:
f5_model_path = os.path.join(model_path, 'F5-TTS')
if os.path.isdir(f5_model_path):
for file in os.listdir(f5_model_path):
p = Path(file)
if (
p.suffix in folder_paths.supported_pt_extensions
and os.path.isfile(os.path.join(f5_model_path, file))
):
txtFile = F5TTSCreate.get_txt_file_path(
os.path.join(f5_model_path, file)
)
if (
os.path.isfile(txtFile)
):
model_types.append("model://"+file)
return model_types
@staticmethod
def get_txt_file_path(file):
p = Path(file)
return os.path.join(os.path.dirname(file), p.stem + ".txt")
def is_voice_name(self, word):
return self.voice_reg.match(word.strip())
def get_voice_names(self, chunks):
voice_names = {}
for text in chunks:
match = self.is_voice_name(text)
if match:
voice_names[match[1]] = True
return voice_names
def split_text(self, speech):
reg1 = r"(?=\{[^\}]+\})"
return re.split(reg1, speech)
@staticmethod
def load_voice(ref_audio, ref_text):
main_voice = {"ref_audio": ref_audio, "ref_text": ref_text}
main_voice["ref_audio"], main_voice["ref_text"] = preprocess_ref_audio_text( # noqa E501
ref_audio, ref_text
)
return main_voice
def get_model_funcs(self):
return {
"F5": self.load_f5_model,
"F5-HI": self.load_f5_model_hi,
"F5-JP": self.load_f5_model_jp,
"F5-FR": self.load_f5_model_fr,
"E2": self.load_e2_model,
}
def get_vocoder(self, vocoder_name):
if vocoder_name == "vocos":
os.path.join(Install.f5TTSPath, "checkpoints/vocos-mel-24khz")
elif vocoder_name == "bigvgan":
os.path.join(Install.f5TTSPath, "checkpoints/bigvgan_v2_24khz_100band_256x") # noqa E501
def load_vocoder(self, vocoder_name):
sys.path.insert(0, f5tts_path)
vocoder = load_vocoder(vocoder_name=vocoder_name)
sys.path.remove(f5tts_path)
return vocoder
def load_model(self, model, vocoder_name):
model_funcs = self.get_model_funcs()
if model in model_funcs:
return model_funcs[model](vocoder_name)
else:
return self.load_f5_model_url(model, vocoder_name)
def get_vocab_file(self):
return os.path.join(
Install.f5TTSPath, "data/Emilia_ZH_EN_pinyin/vocab.txt"
)
def load_e2_model(self, vocoder):
model_cls = UNetT
model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
repo_name = "E2-TTS"
exp_name = "E2TTS_Base"
ckpt_step = 1200000
ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors")) # noqa E501
vocab_file = self.get_vocab_file()
vocoder_name = "vocos"
ema_model = load_model(
model_cls, model_cfg,
ckpt_file, vocab_file=vocab_file,
mel_spec_type=vocoder_name,
)
vocoder = self.load_vocoder(vocoder_name)
return (ema_model, vocoder, vocoder_name)
def load_f5_model(self, vocoder):
repo_name = "F5-TTS"
if vocoder == "bigvgan":
exp_name = "F5TTS_Base_bigvgan"
ckpt_step = 1250000
else:
exp_name = "F5TTS_Base"
ckpt_step = 1200000
return self.load_f5_model_url(
f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors", # noqa E501
vocoder,
)
def load_f5_model_jp(self, vocoder):
return self.load_f5_model_url(
"hf://Jmica/F5TTS/JA_8500000/model_8499660.pt",
vocoder,
"hf://Jmica/F5TTS/JA_8500000/vocab_updated.txt"
)
def load_f5_model_fr(self, vocoder):
return self.load_f5_model_url(
"hf://RASPIAUDIO/F5-French-MixedSpeakers-reduced/model_1374000.pt", # noqa E501
vocoder,
"hf://RASPIAUDIO/F5-French-MixedSpeakers-reduced/vocab.txt" # noqa E501
)
def cached_path(self, url):
if url.startswith("model:"):
path = re.sub("^model:/*", "", url)
models_path = folder_paths.get_folder_paths("checkpoints")
for model_path in models_path:
f5_model_path = os.path.join(model_path, 'F5-TTS')
model_file = os.path.join(f5_model_path, path)
if os.path.isfile(model_file):
return model_file
raise FileNotFoundError("No model found: " + url)
return None
return str(cached_path(url)) # noqa E501
def load_f5_model_hi(self, vocoder):
model_cfg = dict(
dim=768, depth=18, heads=12,
ff_mult=2, text_dim=512, conv_layers=4
)
return self.load_f5_model_url(
"hf://SPRINGLab/F5-Hindi-24KHz/model_2500000.safetensors",
"vocos",
"hf://SPRINGLab/F5-Hindi-24KHz/vocab.txt",
model_cfg=model_cfg,
)
def load_f5_model_url(
self, url, vocoder_name, vocab_url=None, model_cfg=None
):
vocoder = self.load_vocoder(vocoder_name)
model_cls = DiT
if model_cfg is None:
model_cfg = dict(
dim=1024, depth=22, heads=16,
ff_mult=2, text_dim=512, conv_layers=4
)
ckpt_file = str(self.cached_path(url)) # noqa E501
if vocab_url is None:
if url.startswith("model:"):
vocab_file = F5TTSCreate.get_txt_file_path(ckpt_file)
else:
vocab_file = self.get_vocab_file()
else:
vocab_file = str(self.cached_path(vocab_url))
ema_model = load_model(
model_cls, model_cfg,
ckpt_file, vocab_file=vocab_file,
mel_spec_type=vocoder_name,
)
return (ema_model, vocoder, vocoder_name)
def generate_audio(
self, voices, model_obj, chunks, seed, vocoder, mel_spec_type
):
if seed >= 0:
torch.manual_seed(seed)
else:
torch.random.seed()
frame_rate = 44100
generated_audio_segments = []
pbar = ProgressBar(len(chunks))
for text in chunks:
match = self.is_voice_name(text)
if match:
voice = match[1]
else:
print("No voice tag found, using main.")
voice = "main"
if voice not in voices:
print(f"Voice {voice} not found, using main.")
voice = "main"
text = F5TTSCreate.voice_reg.sub("", text)
gen_text = text.strip()
if gen_text == "":
print(f"No text for {voice}, skip")
continue
ref_audio = voices[voice]["ref_audio"]
ref_text = voices[voice]["ref_text"]
print(f"Voice: {voice}")
print("text:"+text)
audio, final_sample_rate, spectragram = infer_process(
ref_audio, ref_text, gen_text, model_obj,
vocoder=vocoder, mel_spec_type=mel_spec_type,
device=comfy.model_management.get_torch_device()
)
generated_audio_segments.append(audio)
frame_rate = final_sample_rate
pbar.update(1)
if generated_audio_segments:
final_wave = np.concatenate(generated_audio_segments)
wave_file = tempfile.NamedTemporaryFile(suffix=".wav", delete=False)
sf.write(wave_file.name, final_wave, frame_rate)
wave_file.close()
waveform, sample_rate = torchaudio.load(wave_file.name)
audio = {
"waveform": waveform.unsqueeze(0),
"sample_rate": sample_rate
}
os.unlink(wave_file.name)
return audio
def create(
self, voices, chunks, seed=-1, model="F5", vocoder_name="vocos"
):
(
model_obj,
vocoder,
mel_spec_type
) = self.load_model(model, vocoder_name)
return self.generate_audio(
voices,
model_obj,
chunks, seed,
vocoder, mel_spec_type=mel_spec_type,
)
def time_shift(self, audio, speed):
import torch_time_stretch
rate = audio['sample_rate']
waveform = audio['waveform']
new_waveform = torch_time_stretch.time_stretch(
waveform,
torch_time_stretch.Fraction(math.floor(speed*100), 100),
rate
)
return {"waveform": new_waveform, "sample_rate": rate}
class F5TTSAudioInputs:
def __init__(self):
self.wave_file_name = None
@classmethod
def INPUT_TYPES(s):
model_types = F5TTSCreate.get_model_types()
return {
"required": {
"sample_audio": ("AUDIO",),
"sample_text": ("STRING", {"default": "Text of sample_audio"}),
"speech": ("STRING", {
"multiline": True,
"default": "This is what I want to say"
}),
"seed": ("INT", {
"display": "number", "step": 1,
"default": 1, "min": -1,
"tooltip": F5TTSCreate.tooltip_seed,
}),
"model": (model_types,),
"vocoder": (F5TTSCreate.vocoder_types, {
"tooltip": "Most models are usally vocos",
}),
"speed": ("FLOAT", {
"default": 1.0,
"tooltip": F5TTSCreate.tooltip_speed,
}),
},
}
CATEGORY = "audio"
RETURN_TYPES = ("AUDIO", )
FUNCTION = "create"
def load_voice_from_input(self, sample_audio, sample_text):
wave_file = tempfile.NamedTemporaryFile(
suffix=".wav", delete=False
)
self.wave_file_name = wave_file.name
wave_file.close()
hasAudio = False
for (batch_number, waveform) in enumerate(
sample_audio["waveform"].cpu()
):
buff = io.BytesIO()
torchaudio.save(
buff, waveform, sample_audio["sample_rate"], format="WAV"
)
with open(self.wave_file_name, 'wb') as f:
f.write(buff.getbuffer())
hasAudio = True
break
if not hasAudio:
raise FileNotFoundError("No audio input")
r = F5TTSCreate.load_voice(self.wave_file_name, sample_text)
return r
def remove_wave_file(self):
if self.wave_file_name is not None:
try:
os.unlink(self.wave_file_name)
self.wave_file_name = None
except Exception as e:
print("F5TTS: Cannot remove? "+self.wave_file_name)
print(e)
def create(
self,
sample_audio, sample_text,
speech, seed=-1, model="F5", vocoder="vocos",
speed=1
):
try:
main_voice = self.load_voice_from_input(sample_audio, sample_text)
f5ttsCreate = F5TTSCreate()
voices = {}
chunks = f5ttsCreate.split_text(speech)
voices['main'] = main_voice
audio = f5ttsCreate.create(
voices, chunks, seed, model, vocoder
)
if speed != 1:
audio = f5ttsCreate.time_shift(audio, speed)
finally:
self.remove_wave_file()
return (audio, )
@classmethod
def IS_CHANGED(
s, sample_audio, sample_text,
speech, seed, model, vocoder, speed
):
m = hashlib.sha256()
m.update(sample_text)
m.update(sample_audio)
m.update(speech)
m.update(seed)
m.update(model)
m.update(vocoder)
m.update(speed)
return m.digest().hex()
class F5TTSAudio:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(s):
input_dir = folder_paths.get_input_directory()
input_dirs = [
"",
'audio',
'F5-TTS',
]
files = []
for dir_short in input_dirs:
d = os.path.join(input_dir, dir_short)
if os.path.exists(d):
dir_files = folder_paths.filter_files_content_types(
os.listdir(d), ["audio", "video"]
)
dir_files = [os.path.join(dir_short, s) for s in dir_files]
files.extend(dir_files)
filesWithTxt = []
for file in files:
txtFile = F5TTSCreate.get_txt_file_path(file)
if os.path.isfile(os.path.join(input_dir, txtFile)):
filesWithTxt.append(file)
filesWithTxt = sorted(filesWithTxt)
model_types = F5TTSCreate.get_model_types()
return {
"required": {
"sample": (filesWithTxt, {"audio_upload": True}),
"speech": ("STRING", {
"multiline": True,
"default": "This is what I want to say"
}),
"seed": ("INT", {
"display": "number", "step": 1,
"default": 1, "min": -1,
"tooltip": F5TTSCreate.tooltip_seed,
}),
"model": (model_types,),
"vocoder": (F5TTSCreate.vocoder_types, {
"tooltip": "Most models are usally vocos",
}),
"speed": ("FLOAT", {
"default": 1.0,
"tooltip": F5TTSCreate.tooltip_speed,
}),
}
}
CATEGORY = "audio"
RETURN_TYPES = ("AUDIO", )
FUNCTION = "create"
def create_with_cli(self, audio_path, audio_text, speech, output_dir):
subprocess.run(
[
"python", "inference-cli.py", "--model", "F5-TTS",
"--ref_audio", audio_path, "--ref_text", audio_text,
"--gen_text", speech,
"--output_dir", output_dir
],
cwd=Install.f5TTSPath
)
output_audio = os.path.join(output_dir, "out.wav")
with wave.open(output_audio, "rb") as wave_file:
frame_rate = wave_file.getframerate()
waveform, sample_rate = torchaudio.load(output_audio)
audio = {"waveform": waveform.unsqueeze(0), "sample_rate": frame_rate}
return audio
def load_voice_from_file(self, sample):
input_dir = folder_paths.get_input_directory()
txt_file = os.path.join(
input_dir,
F5TTSCreate.get_txt_file_path(sample)
)
audio_text = ''
with open(txt_file, 'r', encoding='utf-8') as file:
audio_text = file.read()
audio_path = folder_paths.get_annotated_filepath(sample)
print("audio_text")
print(audio_text)
return F5TTSCreate.load_voice(audio_path, audio_text)
def load_voices_from_files(self, sample, voice_names):
voices = {}
p = Path(sample)
for voice_name in voice_names:
if voice_name == "main":
continue
sample_file = os.path.join(
os.path.dirname(sample),
"{stem}.{voice_name}{suffix}".format(
stem=p.stem,
voice_name=voice_name,
suffix=p.suffix
)
)
print("voice:"+voice_name+","+sample_file+','+sample)
voices[voice_name] = self.load_voice_from_file(sample_file)
return voices
def create(
self,
sample, speech, seed=-2, model="F5", vocoder="vocos",
speed=1
):
# vocoder = "vocos"
# Install.check_install()
main_voice = self.load_voice_from_file(sample)
f5ttsCreate = F5TTSCreate()
chunks = f5ttsCreate.split_text(speech)
voice_names = f5ttsCreate.get_voice_names(chunks)
voices = self.load_voices_from_files(sample, voice_names)
voices['main'] = main_voice
audio = f5ttsCreate.create(voices, chunks, seed, model, vocoder)
if speed != 1:
audio = f5ttsCreate.time_shift(audio, speed)
return (audio, )
@classmethod
def IS_CHANGED(s, sample, speech, seed, model, vocoder, speed):
m = hashlib.sha256()
audio_path = folder_paths.get_annotated_filepath(sample)
audio_txt_path = F5TTSCreate.get_txt_file_path(audio_path)
last_modified_timestamp = os.path.getmtime(audio_path)
txt_last_modified_timestamp = os.path.getmtime(audio_txt_path)
m.update(audio_path)
m.update(str(last_modified_timestamp))
m.update(str(txt_last_modified_timestamp))
m.update(speech)
m.update(seed)
m.update(model)
m.update(vocoder)
m.update(speed)
return m.digest().hex()