-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsave_to_csv_script.py
37 lines (30 loc) · 1.56 KB
/
save_to_csv_script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import os
from datetime import datetime, timedelta
import pandas as pd
from google_fit_tools.google_fit_utils import save_data_as_file
from ui_back import UiBack
user_ids = ["[email protected]", "[email protected]"]
for user_id in user_ids:
backend_instance = UiBack()
backend_instance.add_user(user_id)
# define parametrs which will be defined by user
datetime_str = '2023-07-11 00:00:00'
from_date = datetime.strptime(datetime_str, '%Y-%m-%d %H:%M:%S')
to_date = from_date + timedelta(days=30) # 11/07/2023 - 07/08/2023
start_time = "04:00:00"
end_time = "12:00:00"
current_date = from_date
folder_name = user_id.replace("@", "_").replace(".", "_")
os.makedirs(folder_name, exist_ok=True)
while current_date <= to_date:
# Construct datetime objects for start and end times
start_datetime = datetime.combine(current_date.date(), datetime.strptime(start_time, "%H:%M:%S").time())
end_datetime = datetime.combine(current_date.date(), datetime.strptime(end_time, "%H:%M:%S").time())
# Fetch user data for the current day within the specified time range
user_data = backend_instance.get_user_data_from_google(backend_instance.get_user_by_id(user_id), start_datetime,
end_datetime)
filename = f'{current_date.strftime("%Y-%m-%d")}.xlsx'
filepath = os.path.join(folder_name, filename)
save_data_as_file(pd.DataFrame(user_data),current_date, filepath)
# Move to the next day
current_date += timedelta(days=1)