Skip to content

Latest commit

 

History

History
140 lines (105 loc) · 4.52 KB

README.md

File metadata and controls

140 lines (105 loc) · 4.52 KB

datum

Datum Build Status Datum Build Status PyPI version TensorFlow 2.15 License

Datum provides APIs to create tfrecord daatsets and read tfrecord as tf.data.Datasets

Introduction

TFRecord enables efficient handling of small or large datasets. Samples of datasets are stored in serialized binary string format. The purpose of this library to make it easier for end-user to create and read tfrecord datasets effortlessly.

Example notebooks on Google Colab

  1. Image Classification: Transfer learning using Datum and Keras.
  2. Text Classification: BERT based text classofocation using Datum and Tensorflow Text.

Getting Started

This project supports Python >= 3.7

Installation

Using pip

pip install datum

For development

git clone https://github.com/openagi/datum.git
cd datum
conda env create -f environment.yml
conda activate datum
Generate API documentation
pip install mkdocs==1.2.2
pip install lazydocs==0.4.8

lazydocs datum --output-path docs/api-docs  --overview-file README.md
mkdocs serve

Create tfeecord dataset

Dataset can be created by using the following command

python datum/create_tfrecord.py --input_path <input_data path> --output_path <output_path> --config_path <path to config file>

config_path can be used to set problem specific generator and serializer for that dataset. Sample configs can be found in configs dir.

you can create your own config file, for example:

# test_config.py
# a config file for generating tfrecord for image classification data
import tensorflow as tf

from datum.encoder.encoder import datum_name_to_encoder
from datum.generator.image import ClfDatumGenerator
from datum.serializer.serializer import DatumSerializer
from datum.utils.common_utils import AttrDict

config = {
    'generator': ClfDatumGenerator,
    'sprase_features': [],
    'serializer': DatumSerializer('image', datum_name_to_encoder_fn=datum_name_to_encoder),
    'splits': ['train', 'val'],
    'num_examples': {
        'train': 2000,
        'val': 1000,
    },
cnf = AttrDict(config)

Create tfrecord dataset using export api

from datum.configs import TFRWriteConfigs
from datum.export.export import export_to_tfrecord
from datum.problem import types

# set path to your input data
input_path = "tests/dummy_data/cl"
# set path to output data
output_path = "output_tfrecord"

write_configs = TFRWriteConfigs()
write_configs.splits = {
    "train": {
        "num_examples": 2
    },
    "val": {
        "num_examples": 2
    },
}
export_to_tfrecord(input_path, output_path, types.IMAGE_CLF, write_configs)

Load tfrecord dataset as tf.data.Dataset

Datset can be loaded as tf.data.Dataset as follows

from datum.reader import load

# Load data
dataset = load(<path_to_tfrecord_dir>)
   
# Get training dataset iterator
train_dataset = dataset.train_fn('train', shuffle=True)

# access the data
for batch in train_dataset:
  # pass to training loop

# Read config can be changed by accesing the dataset_configs attribute
dataset_configs = dataset.dataset_configs
dataset_configs.batch_size_train = 32

# sample can be processed using `pre_batching_callback` and `post_batch_callback` fns.
datset_configs.pre_batching_callback = lambda example: <your_callback_fn(example, <*kwargs>)>
# this callback fucntion should be able to handle batch of examples
datset_configs.post_batching_callback = lambda examples: <your_callback_fn(examples, <*kwargs>)>

# update configs before iterating over the dataset
dataset.daatset_configs = dataset_configs
train_dataset = dataset.train_fn('train', False)

Want a certain feature?

Request a feature by opening an issue

datum is Apache 2.0 licensed. See the LICENSE file.