diff --git a/modules/ximgproc/doc/ximgproc.bib b/modules/ximgproc/doc/ximgproc.bib index 279bac1d115..06b89f8a654 100644 --- a/modules/ximgproc/doc/ximgproc.bib +++ b/modules/ximgproc/doc/ximgproc.bib @@ -388,6 +388,15 @@ @article{akinlar2013edcircles publisher={Elsevier} } +@article{akinlar201782, + title = {ColorED: Color edge and segment detection by Edge Drawing (ED)}, + author = {Cuneyt Akinlar and Cihan Topal}, + journal = {Journal of Visual Communication and Image Representation}, + volume = {44}, + pages = {82-94}, + year = {2017}, + publisher={Academic Press} + @article{loke2021accelerated, title={Accelerated superpixel image segmentation with a parallelized DBSCAN algorithm}, author={Loke, Seng Cheong and MacDonald, Bruce A and Parsons, Matthew and W{\"u}nsche, Burkhard Claus}, diff --git a/modules/ximgproc/include/opencv2/ximgproc.hpp b/modules/ximgproc/include/opencv2/ximgproc.hpp index 099205126cb..4c171c4ce19 100644 --- a/modules/ximgproc/include/opencv2/ximgproc.hpp +++ b/modules/ximgproc/include/opencv2/ximgproc.hpp @@ -83,18 +83,42 @@ @defgroup ximgproc_fast_line_detector Fast line detector - @defgroup ximgproc_edge_drawing EdgeDrawing - - EDGE DRAWING LIBRARY FOR GEOMETRIC FEATURE EXTRACTION AND VALIDATION - - Edge Drawing (ED) algorithm is an proactive approach on edge detection problem. In contrast to many other existing edge detection algorithms which follow a subtractive - approach (i.e. after applying gradient filters onto an image eliminating pixels w.r.t. several rules, e.g. non-maximal suppression and hysteresis in Canny), ED algorithm - works via an additive strategy, i.e. it picks edge pixels one by one, hence the name Edge Drawing. Then we process those random shaped edge segments to extract higher level - edge features, i.e. lines, circles, ellipses, etc. The popular method of extraction edge pixels from the thresholded gradient magnitudes is non-maximal supression that tests - every pixel whether it has the maximum gradient response along its gradient direction and eliminates if it does not. However, this method does not check status of the - neighboring pixels, and therefore might result low quality (in terms of edge continuity, smoothness, thinness, localization) edge segments. Instead of non-maximal supression, - ED points a set of edge pixels and join them by maximizing the total gradient response of edge segments. Therefore it can extract high quality edge segments without need for - an additional hysteresis step. + @defgroup ximgproc_edge_drawing Edge Drawing + + Edge Drawing (ED) algorithm for geometric feature extraction and validation. + + The Edge Drawing (ED) algorithm is a proactive approach to the edge detection problem. + In contrast to many existing edge detection algorithms, which follow a subtractive + approach (i.e., applying gradient filters and eliminating pixels based on several rules, + such as non-maximal suppression and hysteresis in the Canny Edge Detector), the ED algorithm + operates via an additive strategy. It selects edge pixels one by one and connects them, + hence the name Edge Drawing. + + ED offers several key advantages: + + 1. **Additive Strategy**: Instead of eliminating non-edge pixels after gradient filtering, + ED incrementally builds up edge segments by selecting and connecting pixels based on + their gradient response. This differs from traditional methods, which rely on + non-maximal suppression and hysteresis to filter out non-edge pixels. + + 2. **Edge Pixel Selection**: ED selects edge pixels by analyzing their local gradient + response, while also considering neighboring pixels. This results in smoother and + more continuous edge segments, as ED aims to maximize the overall gradient strength + along the edge segment. + + 3. **Edge Segment Formation**: Traditional methods, such as non-maximal suppression, + check whether a pixel has the maximum gradient response along its gradient direction, + eliminating it otherwise. However, this approach doesn't consider neighboring pixels, + often resulting in lower-quality edge segments. ED, on the other hand, joins a set of + edge pixels together by maximizing the total gradient response of the segment, leading + to high-quality, well-localized edges. + + 4. **Higher-Level Feature Extraction**: After forming edge segments, ED enables the + extraction of higher-level geometric features such as lines, circles, ellipses, and + other shapes, making it useful for tasks involving geometric feature extraction and validation. + + The ED algorithm produces continuous, smooth, and localized edge segments, making it ideal + for applications requiring precise edge detection and geometric shape analysis. @defgroup ximgproc_fourier Fourier descriptors diff --git a/modules/ximgproc/include/opencv2/ximgproc/edge_drawing.hpp b/modules/ximgproc/include/opencv2/ximgproc/edge_drawing.hpp index 33741e90089..1842da5967b 100644 --- a/modules/ximgproc/include/opencv2/ximgproc/edge_drawing.hpp +++ b/modules/ximgproc/include/opencv2/ximgproc/edge_drawing.hpp @@ -15,7 +15,7 @@ namespace ximgproc //! @addtogroup ximgproc_edge_drawing //! @{ -/** @brief Class implementing the ED (EdgeDrawing) @cite topal2012edge, EDLines @cite akinlar2011edlines, EDPF @cite akinlar2012edpf and EDCircles @cite akinlar2013edcircles algorithms +/** @brief Class implementing the ED (EdgeDrawing) @cite topal2012edge, EDLines @cite akinlar2011edlines, EDPF @cite akinlar2012edpf, EDCircles @cite akinlar2013edcircles and ColorED @cite akinlar201782 algorithms. */ class CV_EXPORTS_W EdgeDrawing : public Algorithm @@ -66,13 +66,13 @@ class CV_EXPORTS_W EdgeDrawing : public Algorithm //! Default value is 1.3 CV_PROP_RW double MaxErrorThreshold; - void read(const FileNode& fn); - void write(FileStorage& fs) const; + CV_WRAP void read(const FileNode& fn); + CV_WRAP void write(FileStorage& fs) const; }; - /** @brief Detects edges in a grayscale image and prepares them to detect lines and ellipses. + /** @brief Detects edges in a grayscale or color image and prepares them to detect lines and ellipses. - @param src 8-bit, single-channel, grayscale input image. + @param src 8-bit, single-channel (CV_8UC1) or color (CV_8UC3, CV_8UC4) input image. */ CV_WRAP virtual void detectEdges(InputArray src) = 0; diff --git a/modules/ximgproc/samples/edge_drawing.py b/modules/ximgproc/samples/edge_drawing.py index 8c8d6add3b7..d379291b743 100644 --- a/modules/ximgproc/samples/edge_drawing.py +++ b/modules/ximgproc/samples/edge_drawing.py @@ -1,7 +1,24 @@ #!/usr/bin/python ''' -This example illustrates how to use cv.ximgproc.EdgeDrawing class. +This example script illustrates how to use cv.ximgproc.EdgeDrawing class. + +It uses the OpenCV library to load an image, and then use the EdgeDrawing class +to detect edges, lines, and ellipses. The detected features are then drawn and displayed. + +The main loop allows the user changing parameters of EdgeDrawing by pressing following keys: + +to toggle the grayscale conversion press 'space' key +to increase MinPathLength value press '/' key +to decrease MinPathLength value press '*' key +to increase MinLineLength value press '+' key +to decrease MinLineLength value press '-' key +to toggle NFAValidation value press 'n' key +to toggle PFmode value press 'p' key +to save parameters to file press 's' key +to load parameters from file press 'l' key + +The program exits when the Esc key is pressed. Usage: ed.py [] @@ -16,71 +33,117 @@ import random as rng import sys -rng.seed(12345) - -def main(): - try: - fn = sys.argv[1] - except IndexError: - fn = 'board.jpg' - - src = cv.imread(cv.samples.findFile(fn)) - gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY) - cv.imshow("source", src) - - ssrc = src.copy()*0 +def EdgeDrawingDemo(src, ed, EDParams, convert_to_gray): + rng.seed(12345) + ssrc = np.zeros_like(src) lsrc = src.copy() esrc = src.copy() - ed = cv.ximgproc.createEdgeDrawing() + img_to_detect = cv.cvtColor(src, cv.COLOR_BGR2GRAY) if convert_to_gray else src - # you can change parameters (refer the documentation to see all parameters) - EDParams = cv.ximgproc_EdgeDrawing_Params() - EDParams.MinPathLength = 50 # try changing this value between 5 to 1000 - EDParams.PFmode = False # defaut value try to swich it to True - EDParams.MinLineLength = 10 # try changing this value between 5 to 100 - EDParams.NFAValidation = True # defaut value try to swich it to False + cv.imshow("source image", img_to_detect) - ed.setParams(EDParams) + print("") + print("convert_to_gray:", convert_to_gray) + print("MinPathLength:", EDParams.MinPathLength) + print("MinLineLength:", EDParams.MinLineLength) + print("PFmode:", EDParams.PFmode) + print("NFAValidation:", EDParams.NFAValidation) + + tm = cv.TickMeter() + tm.start() # Detect edges # you should call this before detectLines() and detectEllipses() - ed.detectEdges(gray) + ed.detectEdges(img_to_detect) segments = ed.getSegments() lines = ed.detectLines() ellipses = ed.detectEllipses() - #Draw detected edge segments - for i in range(len(segments)): - color = (rng.randint(0,256), rng.randint(0,256), rng.randint(0,256)) - cv.polylines(ssrc, [segments[i]], False, color, 1, cv.LINE_8) + tm.stop() + + print("Detection time : {:.2f} ms. using the parameters above".format(tm.getTimeMilli())) + + # Draw detected edge segments + for segment in segments: + color = (rng.randint(0, 256), rng.randint(0, 256), rng.randint(0, 256)) + cv.polylines(ssrc, [segment], False, color, 1, cv.LINE_8) cv.imshow("detected edge segments", ssrc) - #Draw detected lines - if lines is not None: # Check if the lines have been found and only then iterate over these and add them to the image + # Draw detected lines + if lines is not None: # Check if the lines have been found and only then iterate over these and add them to the image lines = np.uint16(np.around(lines)) - for i in range(len(lines)): - cv.line(lsrc, (lines[i][0][0], lines[i][0][1]), (lines[i][0][2], lines[i][0][3]), (0, 0, 255), 1, cv.LINE_AA) + for line in lines: + cv.line(lsrc, (line[0][0], line[0][1]), (line[0][2], line[0][3]), (0, 0, 255), 1, cv.LINE_AA) cv.imshow("detected lines", lsrc) - #Draw detected circles and ellipses - if ellipses is not None: # Check if circles and ellipses have been found and only then iterate over these and add them to the image - for i in range(len(ellipses)): - center = (int(ellipses[i][0][0]), int(ellipses[i][0][1])) - axes = (int(ellipses[i][0][2])+int(ellipses[i][0][3]),int(ellipses[i][0][2])+int(ellipses[i][0][4])) - angle = ellipses[i][0][5] - color = (0, 0, 255) - if ellipses[i][0][2] == 0: - color = (0, 255, 0) - cv.ellipse(esrc, center, axes, angle,0, 360, color, 2, cv.LINE_AA) + # Draw detected circles and ellipses + if ellipses is not None: # Check if circles and ellipses have been found and only then iterate over these and add them to the image + for ellipse in ellipses: + center = (int(ellipse[0][0]), int(ellipse[0][1])) + axes = (int(ellipse[0][2] + ellipse[0][3]), int(ellipse[0][2] + ellipse[0][4])) + angle = ellipse[0][5] + + color = (0, 255, 0) if ellipse[0][2] == 0 else (0, 0, 255) + + cv.ellipse(esrc, center, axes, angle, 0, 360, color, 2, cv.LINE_AA) cv.imshow("detected circles and ellipses", esrc) - cv.waitKey(0) - print('Done') +def main(): + try: + fn = sys.argv[1] + except IndexError: + fn = 'board.jpg' + src = cv.imread(cv.samples.findFile(fn)) + if src is None: + print("Error loading image") + return + + ed = cv.ximgproc.createEdgeDrawing() + + # Set parameters (refer to the documentation for all parameters) + EDParams = cv.ximgproc_EdgeDrawing_Params() + EDParams.MinPathLength = 10 # try changing this value by pressing '/' and '*' keys + EDParams.MinLineLength = 10 # try changing this value by pressing '+' and '-' keys + EDParams.PFmode = False # default value is False, try switching by pressing 'p' key + EDParams.NFAValidation = True # default value is True, try switching by pressing 'n' key + + convert_to_gray = True + key = 0 + + while key != 27: + ed.setParams(EDParams) + EdgeDrawingDemo(src, ed, EDParams, convert_to_gray) + key = cv.waitKey() + if key == 32: # space key + convert_to_gray = not convert_to_gray + if key == 112: # 'p' key + EDParams.PFmode = not EDParams.PFmode + if key == 110: # 'n' key + EDParams.NFAValidation = not EDParams.NFAValidation + if key == 43: # '+' key + EDParams.MinLineLength = EDParams.MinLineLength + 5 + if key == 45: # '-' key + EDParams.MinLineLength = max(0, EDParams.MinLineLength - 5) + if key == 47: # '/' key + EDParams.MinPathLength = EDParams.MinPathLength + 20 + if key == 42: # '*' key + EDParams.MinPathLength = max(0, EDParams.MinPathLength - 20) + if key == 115: # 's' key + fs = cv.FileStorage("ed-params.xml",cv.FileStorage_WRITE) + EDParams.write(fs) + fs.release() + print("parameters saved to ed-params.xml") + if key == 108: # 'l' key + fs = cv.FileStorage("ed-params.xml",cv.FileStorage_READ) + if fs.isOpened(): + EDParams.read(fs.root()) + fs.release() + print("parameters loaded from ed-params.xml") if __name__ == '__main__': print(__doc__) diff --git a/modules/ximgproc/samples/edge_drawing_demo.cpp b/modules/ximgproc/samples/edge_drawing_demo.cpp new file mode 100644 index 00000000000..6a815183d8c --- /dev/null +++ b/modules/ximgproc/samples/edge_drawing_demo.cpp @@ -0,0 +1,185 @@ +/* edge_drawing.cpp + +This example illustrates how to use cv.ximgproc.EdgeDrawing class. + +It uses the OpenCV library to load an image, and then use the EdgeDrawing class +to detect edges, lines, and ellipses. The detected features are then drawn and displayed. + +The main loop allows the user changing parameters of EdgeDrawing by pressing following keys: + +to toggle the grayscale conversion press 'space' key +to increase MinPathLength value press '/' key +to decrease MinPathLength value press '*' key +to increase MinLineLength value press '+' key +to decrease MinLineLength value press '-' key +to toggle NFAValidation value press 'n' key +to toggle PFmode value press 'p' key +to save parameters to file press 's' key +to load parameters from file press 'l' key + +The program exits when the Esc key is pressed. +*/ + +#include +#include +#include +#include + +void EdgeDrawingDemo(const cv::Mat src, cv::Ptr ed, bool convert_to_gray); + +void EdgeDrawingDemo(const cv::Mat src, cv::Ptr ed, bool convert_to_gray) +{ + cv::Mat ssrc = cv::Mat::zeros(src.size(), src.type()); + cv::Mat lsrc = src.clone(); + cv::Mat esrc = src.clone(); + + std::cout << std::endl << "convert_to_gray: " << convert_to_gray << std::endl; + std::cout << "MinPathLength: " << ed->params.MinPathLength << std::endl; + std::cout << "MinLineLength: " << ed->params.MinLineLength << std::endl; + std::cout << "PFmode: " << ed->params.PFmode << std::endl; + std::cout << "NFAValidation: " << ed->params.NFAValidation << std::endl; + + cv::TickMeter tm; + tm.start(); + + cv::Mat img_to_detect; + + if (convert_to_gray) + { + cv::cvtColor(src, img_to_detect, cv::COLOR_BGR2GRAY); + } + else + { + img_to_detect = src; + } + + cv::imshow("source image", img_to_detect); + + tm.start(); + + // Detect edges + ed->detectEdges(img_to_detect); + + std::vector> segments = ed->getSegments(); + std::vector lines; + ed->detectLines(lines); + std::vector ellipses; + ed->detectEllipses(ellipses); + + tm.stop(); + + cv::RNG& rng = cv::theRNG(); + cv::setRNGSeed(0); + + // Draw detected edge segments + for (const auto& segment : segments) + { + cv::Scalar color(rng.uniform(0, 256), rng.uniform(0, 256), rng.uniform(0, 256)); + cv::polylines(ssrc, segment, false, color, 1, cv::LINE_8); + } + + cv::imshow("detected edge segments", ssrc); + + // Draw detected lines + if (!lines.empty()) // Check if the lines have been found and only then iterate over these and add them to the image + { + for (size_t i = 0; i < lines.size(); i++) + { + cv::line(lsrc, cv::Point2d(lines[i][0], lines[i][1]), cv::Point2d(lines[i][2], lines[i][3]), cv::Scalar(0, 0, 255), 1, cv::LINE_AA); + } + } + + cv::imshow("detected lines", lsrc); + + // Draw detected circles and ellipses + if (!ellipses.empty()) // Check if circles and ellipses have been found and only then iterate over these and add them to the image + { + for (const auto& ellipse : ellipses) + { + cv::Point center((int)ellipse[0], (int)ellipse[1]); + cv::Size axes((int)ellipse[2] + (int)ellipse[3], (int)ellipse[2] + (int)ellipse[4]); + double angle(ellipse[5]); + cv::Scalar color = (ellipse[2] == 0) ? cv::Scalar(0, 255, 0) : cv::Scalar(0, 0, 255); + cv::ellipse(esrc, center, axes, angle, 0, 360, color, 1, cv::LINE_AA); + } + } + + cv::imshow("detected circles and ellipses", esrc); + std::cout << "Total Detection Time : " << tm.getTimeMilli() << "ms." << std::endl; +} + +int main(int argc, char** argv) +{ + std::string filename = (argc > 1) ? argv[1] : "board.jpg"; + cv::Mat src = cv::imread(cv::samples::findFile(filename)); + + if (src.empty()) + { + std::cerr << "Error: Could not open or find the image!" << std::endl; + return -1; + } + + cv::Ptr ed = cv::ximgproc::createEdgeDrawing(); + + // Set parameters (refer to the documentation for all parameters) + ed->params.MinPathLength = 10; // try changing this value by pressing '/' and '*' keys + ed->params.MinLineLength = 10; // try changing this value by pressing '+' and '-' keys + ed->params.PFmode = false; // default value is false, try switching by pressing 'p' key + ed->params.NFAValidation = true; // default value is true, try switching by pressing 'n' key + + bool convert_to_gray = true; + int key = 0; + + while (key != 27) + { + EdgeDrawingDemo(src, ed, convert_to_gray); + key = cv::waitKey(0); + + switch (key) + { + case 32: // space key + convert_to_gray = !convert_to_gray; + break; + case 'p': // 'p' key + ed->params.PFmode = !ed->params.PFmode; + break; + case 'n': // 'n' key + ed->params.NFAValidation = !ed->params.NFAValidation; + break; + case '+': // '+' key + ed->params.MinLineLength = std::max(0, ed->params.MinLineLength + 5); + break; + case '-': // '-' key + ed->params.MinLineLength = std::max(0, ed->params.MinLineLength - 5); + break; + case '/': // '/' key + ed->params.MinPathLength += 20; + break; + case '*': // '*' key + ed->params.MinPathLength = std::max(0, ed->params.MinPathLength - 20); + break; + case 's': // 's' key + { + cv::FileStorage fs("ed-params.xml", cv::FileStorage::WRITE); + ed->params.write(fs); + fs.release(); + std::cout << "Parameters saved to ed-params.xml" << std::endl; + } + break; + case 'l': // 'l' key + { + cv::FileStorage fs("ed-params.xml", cv::FileStorage::READ); + if (fs.isOpened()) + { + ed->params.read(fs.root()); + fs.release(); + std::cout << "Parameters loaded from ed-params.xml" << std::endl; + } + } + break; + default: + break; + } + } + return 0; +} diff --git a/modules/ximgproc/samples/fld_lines.cpp b/modules/ximgproc/samples/fld_lines.cpp index 87edf62420d..c6af79abc38 100644 --- a/modules/ximgproc/samples/fld_lines.cpp +++ b/modules/ximgproc/samples/fld_lines.cpp @@ -24,6 +24,7 @@ int main(int argc, char** argv) if( image.empty() ) { + parser.printMessage(); return -1; } @@ -54,7 +55,7 @@ int main(int argc, char** argv) vector lines; // Because of some CPU's power strategy, it seems that the first running of - // an algorithm takes much longer. So here we run the algorithm 10 times + // an algorithm takes much longer. So here we run the algorithm 5 times // to see the algorithm's processing time with sufficiently warmed-up // CPU performance. for (int run_count = 0; run_count < 5; run_count++) { @@ -71,64 +72,7 @@ int main(int argc, char** argv) Mat line_image_fld(image); fld->drawSegments(line_image_fld, lines); imshow("FLD result", line_image_fld); - - waitKey(1); - - Ptr ed = createEdgeDrawing(); - ed->params.EdgeDetectionOperator = EdgeDrawing::SOBEL; - ed->params.GradientThresholdValue = 38; - ed->params.AnchorThresholdValue = 8; - - vector ellipses; - - for (int run_count = 0; run_count < 5; run_count++) { - double freq = getTickFrequency(); - lines.clear(); - int64 start = getTickCount(); - - // Detect edges - //you should call this before detectLines() and detectEllipses() - ed->detectEdges(image); - - // Detect lines - ed->detectLines(lines); - double duration_ms = double(getTickCount() - start) * 1000 / freq; - cout << "Elapsed time for EdgeDrawing detectLines " << duration_ms << " ms." << endl; - - start = getTickCount(); - // Detect circles and ellipses - ed->detectEllipses(ellipses); - duration_ms = double(getTickCount() - start) * 1000 / freq; - cout << "Elapsed time for EdgeDrawing detectEllipses " << duration_ms << " ms." << endl; - } - - Mat edge_image_ed = Mat::zeros(image.size(), CV_8UC3); - vector > segments = ed->getSegments(); - - for (size_t i = 0; i < segments.size(); i++) - { - const Point* pts = &segments[i][0]; - int n = (int)segments[i].size(); - polylines(edge_image_ed, &pts, &n, 1, false, Scalar((rand() & 255), (rand() & 255), (rand() & 255)), 1); - } - - imshow("EdgeDrawing detected edges", edge_image_ed); - - Mat line_image_ed(image); - fld->drawSegments(line_image_ed, lines); - - // Draw circles and ellipses - for (size_t i = 0; i < ellipses.size(); i++) - { - Point center((int)ellipses[i][0], (int)ellipses[i][1]); - Size axes((int)ellipses[i][2] + (int)ellipses[i][3], (int)ellipses[i][2] + (int)ellipses[i][4]); - double angle(ellipses[i][5]); - Scalar color = ellipses[i][2] == 0 ? Scalar(255, 255, 0) : Scalar(0, 255, 0); - - ellipse(line_image_ed, center, axes, angle, 0, 360, color, 2, LINE_AA); - } - - imshow("EdgeDrawing result", line_image_ed); waitKey(); + return 0; } diff --git a/modules/ximgproc/src/edge_drawing.cpp b/modules/ximgproc/src/edge_drawing.cpp index 6a63f9d90b3..e31e8bd9ec5 100644 --- a/modules/ximgproc/src/edge_drawing.cpp +++ b/modules/ximgproc/src/edge_drawing.cpp @@ -22,8 +22,6 @@ mutable Mat_ dirImage; int gradThresh; int op; bool SumFlag; -int* grads; -bool PFmode; }; void ComputeGradientBody::operator() (const Range& range) const @@ -78,9 +76,6 @@ void ComputeGradientBody::operator() (const Range& range) const gradRow[x] = (ushort)sum; - if (PFmode) - grads[sum]++; - if (sum >= gradThresh) { if (gx >= gy) @@ -92,6 +87,9 @@ void ComputeGradientBody::operator() (const Range& range) const } } +// Look up table size for fast color space conversion +#define LUT_SIZE (1024*4096) + class EdgeDrawingImpl : public EdgeDrawing { public: @@ -126,15 +124,38 @@ class EdgeDrawingImpl : public EdgeDrawing Mat smoothImage; uchar *edgeImg; // pointer to edge image data uchar *smoothImg; // pointer to smoothed image data - int segmentNos; Mat srcImage; + int op; // edge detection operator + int gradThresh; // gradient threshold + int anchorThresh; // anchor point threshold double divForTestSegment; double* dH; int* grads; int np; private: + Mat L_Img; + Mat a_Img; + Mat b_Img; + + uchar* smooth_L; + uchar* smooth_a; + uchar* smooth_b; + + std::vector> segments; + + static double LUT1[LUT_SIZE + 1]; + static double LUT2[LUT_SIZE + 1]; + static bool LUT_Initialized; + + void MyRGB2LabFast(); + void ComputeGradientMapByDiZenzo(); + void smoothChannel(const Mat& src, Mat& dst, double sigma); + + static void fixEdgeSegments(std::vector> map); + static void InitColorEDLib(); + void ComputeGradient(); void ComputeAnchorPoints(); void JoinAnchorPointsUsingSortedAnchors(); @@ -153,10 +174,7 @@ class EdgeDrawingImpl : public EdgeDrawing uchar *dirImg; // pointer to direction image data ushort *gradImg; // pointer to gradient image data - int op; // edge detection operator - int gradThresh; // gradient threshold - int anchorThresh; // anchor point threshold - + int segmentNos; std::vector lines; int linesNo; int min_line_len; @@ -337,9 +355,9 @@ void EdgeDrawingImpl::write(cv::FileStorage& fs) const EdgeDrawingImpl::EdgeDrawingImpl() { params = EdgeDrawing::Params(); - nfa = new NFALUT(1, 1/2, 1, 1); - dH = new double[MAX_GRAD_VALUE]; - grads = new int[MAX_GRAD_VALUE]; + nfa = new NFALUT(1, 1/8, 0.5); + dH = new double[ED_MAX_GRAD_VALUE]; + grads = new int[ED_MAX_GRAD_VALUE]; } EdgeDrawingImpl::~EdgeDrawingImpl() @@ -351,7 +369,7 @@ EdgeDrawingImpl::~EdgeDrawingImpl() void EdgeDrawingImpl::detectEdges(InputArray src) { - CV_Assert(!src.empty() && src.type() == CV_8UC1); + CV_Assert(!src.empty() && (src.type() == CV_8UC1 || src.type() == CV_8UC3 || src.type() == CV_8UC4)); gradThresh = params.GradientThresholdValue; anchorThresh = params.AnchorThresholdValue; op = params.EdgeDetectionOperator; @@ -366,6 +384,9 @@ void EdgeDrawingImpl::detectEdges(InputArray src) if (anchorThresh < 0) anchorThresh = 0; + if (params.MinPathLength < 3) + params.MinPathLength = 3; + segmentNos = 0; anchorNos = 0; anchorPoints.clear(); @@ -377,58 +398,157 @@ void EdgeDrawingImpl::detectEdges(InputArray src) height = srcImage.rows; width = srcImage.cols; - edgeImage = Mat(height, width, CV_8UC1, Scalar(0)); // initialize edge Image - gradImage = Mat(height, width, CV_16UC1); // gradImage contains short values + edgeImage = Mat::zeros(height, width, CV_8UC1); + gradImage = Mat::zeros(height, width, CV_16UC1); // gradImage contains short values dirImage = Mat(height, width, CV_8UC1); - - if (params.Sigma < 1.0) - smoothImage = srcImage; - else if (params.Sigma == 1.0) - GaussianBlur(srcImage, smoothImage, Size(5, 5), params.Sigma); - else - GaussianBlur(srcImage, smoothImage, Size(), params.Sigma); // calculate kernel from sigma - - // Assign Pointers from Mat's data - smoothImg = smoothImage.data; - gradImg = (ushort*)gradImage.data; edgeImg = edgeImage.data; + gradImg = (ushort*)gradImage.data; dirImg = dirImage.data; - if (params.PFmode) + if (srcImage.type() == CV_8UC1) { - memset(dH, 0, sizeof(double) * MAX_GRAD_VALUE); - memset(grads, 0, sizeof(int) * MAX_GRAD_VALUE); - } + if (params.Sigma < 1.0) + smoothImage = srcImage; + else if (params.Sigma == 1.0) + GaussianBlur(srcImage, smoothImage, Size(5, 5), params.Sigma); + else + GaussianBlur(srcImage, smoothImage, Size(), params.Sigma); // calculate kernel from sigma + + smoothImg = smoothImage.data; + + ComputeGradient(); // COMPUTE GRADIENT & EDGE DIRECTION MAPS + ComputeAnchorPoints(); // COMPUTE ANCHORS + JoinAnchorPointsUsingSortedAnchors(); // JOIN ANCHORS + + if (params.PFmode) + { + memset(gradImg, 0, sizeof(short) * width * height); + memset(grads, 0, sizeof(int) * ED_MAX_GRAD_VALUE); + memset(dH, 0, sizeof(double) * ED_MAX_GRAD_VALUE); + memset(edgeImg, 0, width * height); // clear edge image - ComputeGradient(); // COMPUTE GRADIENT & EDGE DIRECTION MAPS - ComputeAnchorPoints(); // COMPUTE ANCHORS - JoinAnchorPointsUsingSortedAnchors(); // JOIN ANCHORS + GaussianBlur(srcImage, smoothImage, Size(), 0.4); - if (params.PFmode) + for (int i = 1; i < height - 1; i++) { + for (int j = 1; j < width - 1; j++) { + + int com1 = smoothImg[(i + 1) * width + j + 1] - smoothImg[(i - 1) * width + j - 1]; + int com2 = smoothImg[(i - 1) * width + j + 1] - smoothImg[(i + 1) * width + j - 1]; + + int gx = abs(com1 + com2 + (smoothImg[i * width + j + 1] - smoothImg[i * width + j - 1])); + int gy = abs(com1 - com2 + (smoothImg[(i + 1) * width + j] - smoothImg[(i - 1) * width + j])); + + int g = gx + gy; + + gradImg[i * width + j] = (ushort)g; + grads[g]++; + } + } + + // Compute probability function H + int size = (width - 2) * (height - 2); + + for (int i = ED_MAX_GRAD_VALUE - 1; i > 0; i--) + grads[i - 1] += grads[i]; + + for (int i = 0; i < ED_MAX_GRAD_VALUE; i++) + dH[i] = (double)grads[i] / ((double)size); + + divForTestSegment = 2.25; // Some magic number :-) + + np = 0; + for (int i = 0; i < segmentNos; i++) + { + int len = (int)segmentPoints[i].size(); + np += (len * (len - 1)) / 2; + } + + // Validate segments + for (int i = 0; i < segmentNos; i++) + TestSegment(i, 0, (int)segmentPoints[i].size() - 1); + + ExtractNewSegments(); + } + } + else { - // Compute probability function H - int size = (width - 2) * (height - 2); + // Convert RGB2Lab + MyRGB2LabFast(); + + // Smooth Channels + smoothChannel(L_Img, L_Img, params.Sigma); + smoothChannel(a_Img, a_Img, params.Sigma); + smoothChannel(b_Img, b_Img, params.Sigma); + + smooth_L = L_Img.data; + smooth_a = a_Img.data; + smooth_b = b_Img.data; + + ComputeGradientMapByDiZenzo(); // Compute Gradient & Edge Direction Maps + + // Compute anchors with the user supplied parameters + anchorThresh = 0; // anchorThresh used as zero while computing anchor points if selectStableAnchors set. + // Finding higher number of anchors is OK, because we have following validation steps in selectStableAnchors. + ComputeAnchorPoints(); // COMPUTE ANCHORS + anchorThresh = params.AnchorThresholdValue; // set it to its initial argument value for further anchor validation. + anchorPoints.clear(); // considering validation step below, it should constructed again. + + for (int i = 1; i < height - 1; i++) { + for (int j = 1; j < width - 1; j++) { + if (edgeImg[i * width + j] != ANCHOR_PIXEL) continue; + + // Take only "stable" anchors + // 0 degree edge + if (edgeImg[i * width + j - 1] && edgeImg[i * width + j + 1]) { + int diff1 = gradImg[i * width + j] - gradImg[(i - 1) * width + j]; + int diff2 = gradImg[i * width + j] - gradImg[(i + 1) * width + j]; + if (diff1 >= anchorThresh && diff2 >= anchorThresh) edgeImg[i * width + j] = 255; - for (int i = MAX_GRAD_VALUE - 1; i > 0; i--) - grads[i - 1] += grads[i]; + continue; + } - for (int i = 0; i < MAX_GRAD_VALUE; i++) - dH[i] = (double)grads[i] / ((double)size); + // 90 degree edge + if (edgeImg[(i - 1) * width + j] && edgeImg[(i + 1) * width + j]) { + int diff1 = gradImg[i * width + j] - gradImg[i * width + j - 1]; + int diff2 = gradImg[i * width + j] - gradImg[i * width + j + 1]; + if (diff1 >= anchorThresh && diff2 >= anchorThresh) edgeImg[i * width + j] = 255; - divForTestSegment = 2.25; // Some magic number :-) - memset(edgeImg, 0, width * height); // clear edge image - np = 0; - for (int i = 0; i < segmentNos; i++) - { - int len = (int)segmentPoints[i].size(); - np += (len * (len - 1)) / 2; + continue; + } + + // 135 degree diagonal + if (edgeImg[(i - 1) * width + j - 1] && edgeImg[(i + 1) * width + j + 1]) { + int diff1 = gradImg[i * width + j] - gradImg[(i - 1) * width + j + 1]; + int diff2 = gradImg[i * width + j] - gradImg[(i + 1) * width + j - 1]; + if (diff1 >= anchorThresh && diff2 >= anchorThresh) edgeImg[i * width + j] = 255; + continue; + } + + // 45 degree diagonal + if (edgeImg[(i - 1) * width + j + 1] && edgeImg[(i + 1) * width + j - 1]) { + int diff1 = gradImg[i * width + j] - gradImg[(i - 1) * width + j - 1]; + int diff2 = gradImg[i * width + j] - gradImg[(i + 1) * width + j + 1]; + if (diff1 >= anchorThresh && diff2 >= anchorThresh) edgeImg[i * width + j] = 255; + } + } } - // Validate segments - for (int i = 0; i < segmentNos; i++) - TestSegment(i, 0, (int)segmentPoints[i].size() - 1); + for (int i = 0; i < width * height; i++) + if (edgeImg[i] == ANCHOR_PIXEL) + edgeImg[i] = 0; + else if (edgeImg[i] == 255) { + edgeImg[i] = ANCHOR_PIXEL; + int y = i / width; + int x = i % width; + anchorPoints.push_back(Point(x, y)); // push validated anchor point to vector + } + + anchorNos = (int)anchorPoints.size(); // get # of anchor pixels + + JoinAnchorPointsUsingSortedAnchors(); // JOIN ANCHORS - ExtractNewSegments(); + // Fix 1 pixel errors in the edge map + fixEdgeSegments(segments); } } @@ -473,8 +593,6 @@ void EdgeDrawingImpl::ComputeGradient() body.gradThresh = gradThresh; body.SumFlag = params.SumFlag; body.op = op; - body.grads = grads; - body.PFmode = params.PFmode; parallel_for_(Range(1, smoothImage.rows - 1), body); } @@ -562,24 +680,24 @@ void EdgeDrawingImpl::JoinAnchorPointsUsingSortedAnchors() { stack[++top].r = i; stack[top].c = j; - stack[top].dir = DOWN; + stack[top].dir = ED_DOWN; stack[top].parent = 0; stack[++top].r = i; stack[top].c = j; - stack[top].dir = UP; + stack[top].dir = ED_UP; stack[top].parent = 0; } else { stack[++top].r = i; stack[top].c = j; - stack[top].dir = RIGHT; + stack[top].dir = ED_RIGHT; stack[top].parent = 0; stack[++top].r = i; stack[top].c = j; - stack[top].dir = LEFT; + stack[top].dir = ED_LEFT; stack[top].parent = 0; } @@ -609,7 +727,7 @@ void EdgeDrawingImpl::JoinAnchorPointsUsingSortedAnchors() len++; chainLen++; - if (dir == LEFT) + if (dir == ED_LEFT) { while (dirImg[r * width + c] == EDGE_HORIZONTAL) { @@ -680,12 +798,12 @@ void EdgeDrawingImpl::JoinAnchorPointsUsingSortedAnchors() stack[++top].r = r; stack[top].c = c; - stack[top].dir = DOWN; + stack[top].dir = ED_DOWN; stack[top].parent = noChains; stack[++top].r = r; stack[top].c = c; - stack[top].dir = UP; + stack[top].dir = ED_UP; stack[top].parent = noChains; len--; @@ -695,7 +813,7 @@ void EdgeDrawingImpl::JoinAnchorPointsUsingSortedAnchors() chains[parent].children[0] = noChains; noChains++; } - else if (dir == RIGHT) + else if (dir == ED_RIGHT) { while (dirImg[r * width + c] == EDGE_HORIZONTAL) { @@ -766,12 +884,12 @@ void EdgeDrawingImpl::JoinAnchorPointsUsingSortedAnchors() stack[++top].r = r; stack[top].c = c; - stack[top].dir = DOWN; // Go down + stack[top].dir = ED_DOWN; // Go down stack[top].parent = noChains; stack[++top].r = r; stack[top].c = c; - stack[top].dir = UP; // Go up + stack[top].dir = ED_UP; // Go up stack[top].parent = noChains; len--; @@ -782,7 +900,7 @@ void EdgeDrawingImpl::JoinAnchorPointsUsingSortedAnchors() noChains++; } - else if (dir == UP) + else if (dir == ED_UP) { while (dirImg[r * width + c] == EDGE_VERTICAL) { @@ -853,12 +971,12 @@ void EdgeDrawingImpl::JoinAnchorPointsUsingSortedAnchors() stack[++top].r = r; stack[top].c = c; - stack[top].dir = RIGHT; + stack[top].dir = ED_RIGHT; stack[top].parent = noChains; stack[++top].r = r; stack[top].c = c; - stack[top].dir = LEFT; + stack[top].dir = ED_LEFT; stack[top].parent = noChains; len--; @@ -939,12 +1057,12 @@ void EdgeDrawingImpl::JoinAnchorPointsUsingSortedAnchors() stack[++top].r = r; stack[top].c = c; - stack[top].dir = RIGHT; + stack[top].dir = ED_RIGHT; stack[top].parent = noChains; stack[++top].r = r; stack[top].c = c; - stack[top].dir = LEFT; + stack[top].dir = ED_LEFT; stack[top].parent = noChains; len--; @@ -1187,17 +1305,13 @@ void EdgeDrawingImpl::JoinAnchorPointsUsingSortedAnchors() delete[] pixels; } -int* EdgeDrawingImpl::sortAnchorsByGradValue1() -{ - int SIZE = 128 * 256; - int* C = new int[SIZE]; - memset(C, 0, sizeof(int) * SIZE); +int* EdgeDrawingImpl::sortAnchorsByGradValue1() { + const int SIZE = 128 * 256; + std::vector C(SIZE, 0); // Count the number of grad values - for (int i = 1; i < height - 1; i++) - { - for (int j = 1; j < width - 1; j++) - { + for (int i = 1; i < height - 1; i++) { + for (int j = 1; j < width - 1; j++) { if (edgeImg[i * width + j] != ANCHOR_PIXEL) continue; @@ -1207,16 +1321,15 @@ int* EdgeDrawingImpl::sortAnchorsByGradValue1() } // Compute indices - for (int i = 1; i < SIZE; i++) + for (int i = 1; i < SIZE; i++) { C[i] += C[i - 1]; + } int noAnchors = C[SIZE - 1]; int* A = new int[noAnchors]; - for (int i = 1; i < height - 1; i++) - { - for (int j = 1; j < width - 1; j++) - { + for (int i = 1; i < height - 1; i++) { + for (int j = 1; j < width - 1; j++) { if (edgeImg[i * width + j] != ANCHOR_PIXEL) continue; @@ -1226,52 +1339,35 @@ int* EdgeDrawingImpl::sortAnchorsByGradValue1() } } - delete[] C; return A; } -int EdgeDrawingImpl::LongestChain(Chain* chains, int root) -{ - if (root == -1 || chains[root].len == 0) +int EdgeDrawingImpl::LongestChain(Chain* chains, int root) { + if (root == -1 || chains[root].len == 0) { return 0; + } - int len0 = 0; - if (chains[root].children[0] != -1) - len0 = LongestChain(chains, chains[root].children[0]); - - int len1 = 0; - if (chains[root].children[1] != -1) - len1 = LongestChain(chains, chains[root].children[1]); - - int max = 0; + int leftLength = LongestChain(chains, chains[root].children[0]); + int rightLength = LongestChain(chains, chains[root].children[1]); - if (len0 >= len1) - { - max = len0; - chains[root].children[1] = -1; + if (leftLength >= rightLength) { + chains[root].children[1] = -1; // Invalidate the right child + return chains[root].len + leftLength; } - else - { - max = len1; - chains[root].children[0] = -1; + else { + chains[root].children[0] = -1; // Invalidate the left child + return chains[root].len + rightLength; } - - return chains[root].len + max; } -int EdgeDrawingImpl::RetrieveChainNos(Chain* chains, int root, int chainNos[]) -{ +int EdgeDrawingImpl::RetrieveChainNos(Chain* chains, int root, int chainNos[]) { int count = 0; - while (root != -1) - { - chainNos[count] = root; - count++; + while (root != -1) { + chainNos[count++] = root; - if (chains[root].children[0] != -1) - root = chains[root].children[0]; - else - root = chains[root].children[1]; + // Move to the next child in the chain + root = (chains[root].children[0] != -1) ? chains[root].children[0] : chains[root].children[1]; } return count; @@ -1291,7 +1387,7 @@ void EdgeDrawingImpl::detectLines(OutputArray _lines) max_distance_between_two_lines = params.MaxDistanceBetweenTwoLines; max_error = params.MaxErrorThreshold; - if (min_line_len == -1) // If no initial value given, compute it + if (min_line_len < 0) // If no initial value given, compute it min_line_len = ComputeMinLineLength(); if (min_line_len < 9) // avoids small line segments in the result. Might be deleted! @@ -1318,7 +1414,7 @@ void EdgeDrawingImpl::detectLines(OutputArray _lines) JoinCollinearLines(); - if (params.NFAValidation) + if (params.NFAValidation && srcImage.channels() < 3) ValidateLineSegments(); // Delete redundant space from lines @@ -1440,7 +1536,7 @@ void EdgeDrawingImpl::SplitSegment2Lines(double* x, double* y, int noPixels, int index--; ComputeClosestPoint(x[index], y[index], lastA, lastB, lastInvert, ex, ey); - if ((sx == ex) & (sy == ey)) + if ((sx == ex) && (sy == ey)) break; // Add the line segment to lines @@ -1517,7 +1613,8 @@ void EdgeDrawingImpl::ValidateLineSegments() { int lutSize = (width + height) / 8; double prob = 1.0 / 8; // probability of alignment - nfa = new NFALUT(lutSize, prob, width, height); + double logNT = 2.0 * (log10((double)width) + log10((double)height)); + nfa = new NFALUT(lutSize, prob, logNT); } int* x = new int[(width + height) * 4]; @@ -2037,7 +2134,7 @@ double EdgeDrawingImpl::ComputeMinDistanceBetweenTwoLines(EDLineSegment* ls1, ED double dy = ls1->sy - ls2->sy; double d = sqrt(dx * dx + dy * dy); double min = d; - int which = SOUTH_SOUTH; + int which = ED_SOUTH_SOUTH; dx = ls1->sx - ls2->ex; dy = ls1->sy - ls2->ey; @@ -2045,7 +2142,7 @@ double EdgeDrawingImpl::ComputeMinDistanceBetweenTwoLines(EDLineSegment* ls1, ED if (d < min) { min = d; - which = SOUTH_EAST; + which = ED_SOUTH_EAST; } dx = ls1->ex - ls2->sx; @@ -2054,7 +2151,7 @@ double EdgeDrawingImpl::ComputeMinDistanceBetweenTwoLines(EDLineSegment* ls1, ED if (d < min) { min = d; - which = EAST_SOUTH; + which = ED_EAST_SOUTH; } dx = ls1->ex - ls2->ex; @@ -2063,7 +2160,7 @@ double EdgeDrawingImpl::ComputeMinDistanceBetweenTwoLines(EDLineSegment* ls1, ED if (d < min) { min = d; - which = EAST_EAST; + which = ED_EAST_EAST; } if (pwhich) @@ -2370,51 +2467,53 @@ void EdgeDrawingImpl::TestSegment(int i, int index1, int index2) TestSegment(i, start, index2); } -//---------------------------------------------------------------------------------------------- -// After the validation of the edge segments, extracts the valid ones -// In other words, updates the valid segments' pixel arrays and their lengths +// After validating the edge segments, this function extracts the valid ones. +// Specifically, it updates the valid segments' pixel arrays and their lengths based on validation. void EdgeDrawingImpl::ExtractNewSegments() { vector< vector > validSegments; - int noSegments = 0; for (int i = 0; i < segmentNos; i++) { int start = 0; while (start < (int)segmentPoints[i].size()) { + // Find the first valid start point while (start < (int)segmentPoints[i].size()) { int r = segmentPoints[i][start].y; int c = segmentPoints[i][start].x; - if (edgeImg[r * width + c]) break; + if (edgeImg[r * width + c]) break; // Found valid point start++; } int end = start + 1; + + // Find the end of the valid segment while (end < (int)segmentPoints[i].size()) { int r = segmentPoints[i][end].y; int c = segmentPoints[i][end].x; - if (edgeImg[r * width + c] == 0) break; + if (edgeImg[r * width + c] == 0) break; // End of segment end++; } + // Length of the segment int len = end - start; + + // Only accept segments of length >= 10 if (len >= 10) { - // A new segment. Accepted only only long enough (whatever that means) - //segments[noSegments].pixels = &map->segments[i].pixels[start]; - //segments[noSegments].noPixels = len; - validSegments.push_back(vector()); - vector subVec(&segmentPoints[i][start], &segmentPoints[i][end - 1]); - validSegments[noSegments] = subVec; - noSegments++; + vector subVec(segmentPoints[i].begin() + start, segmentPoints[i].begin() + end); // Safer bounds + validSegments.push_back(subVec); // Add to valid segments } + + // Move start to next unprocessed point start = end + 1; } } + // Replace the old segments with valid segments segmentPoints = validSegments; - segmentNos = noSegments; + segmentNos = (int)validSegments.size(); // Update number of segments } double EdgeDrawingImpl::NFA(double prob, int len) @@ -3119,7 +3218,8 @@ void EdgeDrawingImpl::ValidateCircles(bool validate) { int lutSize = (width + height) / 8; double prob = 1.0 / 8; // probability of alignment - nfa = new NFALUT(lutSize, prob, width, height); // create look up table + double logNT = 2.0 * (log10((double)width) + log10((double)height)); + nfa = new NFALUT(lutSize, prob, logNT); // create look up table } // Validate circles & ellipses @@ -3297,12 +3397,24 @@ void EdgeDrawingImpl::ValidateCircles(bool validate) // This produces less false positives, but occationally misses on some valid circles } out: - // compute gx & gy - int com1 = smoothImg[(r + 1) * width + c + 1] - smoothImg[(r - 1) * width + c - 1]; - int com2 = smoothImg[(r - 1) * width + c + 1] - smoothImg[(r + 1) * width + c - 1]; + int com1, com2, gx, gy; + if (srcImage.channels() > 1) + { + com1 = smooth_L[(r + 1) * width + c + 1] - smooth_L[(r - 1) * width + c - 1]; + com2 = smooth_L[(r - 1) * width + c + 1] - smooth_L[(r + 1) * width + c - 1]; + + gx = com1 + com2 + smooth_L[r * width + c + 1] - smooth_L[r * width + c - 1]; + gy = com1 - com2 + smooth_L[(r + 1) * width + c] - smooth_L[(r - 1) * width + c]; + } + else + { + com1 = smoothImg[(r + 1) * width + c + 1] - smoothImg[(r - 1) * width + c - 1]; + com2 = smoothImg[(r - 1) * width + c + 1] - smoothImg[(r + 1) * width + c - 1]; + + gx = com1 + com2 + smoothImg[r * width + c + 1] - smoothImg[r * width + c - 1]; + gy = com1 - com2 + smoothImg[(r + 1) * width + c] - smoothImg[(r - 1) * width + c]; + } - int gx = com1 + com2 + smoothImg[r * width + c + 1] - smoothImg[r * width + c - 1]; - int gy = com1 - com2 + smoothImg[(r + 1) * width + c] - smoothImg[(r - 1) * width + c]; double pixelAngle = nfa->myAtan2((double)gx, (double)-gy); double derivX, derivY; @@ -3778,7 +3890,7 @@ void EdgeDrawingImpl::JoinArcs1() EX = arcs[CandidateArcNo].sx; EY = arcs[CandidateArcNo].sy; break; - } //end-switch + } break; // Do not look at the other candidates } @@ -5745,5 +5857,276 @@ void EdgeDrawingImpl::ROTATE(double** a, int i, int j, int k, int l, double tau, a[k][l] = h + s * (g - h * tau); } +void EdgeDrawingImpl::MyRGB2LabFast() +{ + const uchar* blueImg; + const uchar* greenImg; + const uchar* redImg; + + // Split channels (OpenCV uses BGR) + vector bgr(3); + split(srcImage, bgr); + blueImg = bgr[0].data; + greenImg = bgr[1].data; + redImg = bgr[2].data; + + // Initialize LUTs if necessary + if (!LUT_Initialized) + InitColorEDLib(); + + L_Img.create(height, width, CV_8U); + a_Img.create(height, width, CV_8U); + b_Img.create(height, width, CV_8U); + + std::vector L(width * height); + std::vector a(width * height); + std::vector b(width * height); + + // Conversion from RGB to Lab + for (int i = 0; i < width * height; i++) + { + double red = LUT1[static_cast(redImg[i] / 255.0 * LUT_SIZE + 0.5)] * 100; + double green = LUT1[static_cast(greenImg[i] / 255.0 * LUT_SIZE + 0.5)] * 100; + double blue = LUT1[static_cast(blueImg[i] / 255.0 * LUT_SIZE + 0.5)] * 100; + + double x = red * 0.4124564 + green * 0.3575761 + blue * 0.1804375; + double y = red * 0.2126729 + green * 0.7151522 + blue * 0.0721750; + double z = red * 0.0193339 + green * 0.1191920 + blue * 0.9503041; + + x /= 95.047; + y /= 100.0; + z /= 108.883; + + x = LUT2[static_cast(x * LUT_SIZE + 0.5)]; + y = LUT2[static_cast(y * LUT_SIZE + 0.5)]; + z = LUT2[static_cast(z * LUT_SIZE + 0.5)]; + + L[i] = (116.0 * y) - 16; + a[i] = 500.0 * (x / y); + b[i] = 200.0 * (y - z); + } + + // Scaling to [0, 255] + auto scale_to_uchar = [](std::vector& src, uchar* dst, int size) { + double minVal = *std::min_element(src.begin(), src.end()); + double maxVal = *std::max_element(src.begin(), src.end()); + double scale = 255.0 / (maxVal - minVal); + for (int i = 0; i < size; i++) { + dst[i] = static_cast((src[i] - minVal) * scale); + } + }; + + scale_to_uchar(L, L_Img.data, width * height); + scale_to_uchar(a, a_Img.data, width * height); + scale_to_uchar(b, b_Img.data, width * height); +} + +void EdgeDrawingImpl::ComputeGradientMapByDiZenzo() +{ + int max = 0; + + for (int i = 1; i < height - 1; i++) { + for (int j = 1; j < width - 1; j++) { + + int com1, com2, gxCh1, gxCh2, gxCh3, gyCh1, gyCh2, gyCh3; + + if(params.EdgeDetectionOperator == PREWITT) + { + // Prewitt for channel1 + com1 = smooth_L[(i + 1) * width + j + 1] - smooth_L[(i - 1) * width + j - 1]; + com2 = smooth_L[(i - 1) * width + j + 1] - smooth_L[(i + 1) * width + j - 1]; + + gxCh1 = com1 + com2 + (smooth_L[i * width + j + 1] - smooth_L[i * width + j - 1]); + gyCh1 = com1 - com2 + (smooth_L[(i + 1) * width + j] - smooth_L[(i - 1) * width + j]); + + // Prewitt for channel2 + com1 = smooth_a[(i + 1) * width + j + 1] - smooth_a[(i - 1) * width + j - 1]; + com2 = smooth_a[(i - 1) * width + j + 1] - smooth_a[(i + 1) * width + j - 1]; + + gxCh2 = com1 + com2 + (smooth_a[i * width + j + 1] - smooth_a[i * width + j - 1]); + gyCh2 = com1 - com2 + (smooth_a[(i + 1) * width + j] - smooth_a[(i - 1) * width + j]); + + // Prewitt for channel3 + com1 = smooth_b[(i + 1) * width + j + 1] - smooth_b[(i - 1) * width + j - 1]; + com2 = smooth_b[(i - 1) * width + j + 1] - smooth_b[(i + 1) * width + j - 1]; + + gxCh3 = com1 + com2 + (smooth_b[i * width + j + 1] - smooth_b[i * width + j - 1]); + gyCh3 = com1 - com2 + (smooth_b[(i + 1) * width + j] - smooth_b[(i - 1) * width + j]); + } + else + { + // Sobel for channel1 + com1 = smooth_L[(i + 1) * width + j + 1] - smooth_L[(i - 1) * width + j - 1]; + com2 = smooth_L[(i - 1) * width + j + 1] - smooth_L[(i + 1) * width + j - 1]; + + gxCh1 = com1 + com2 + 2 * (smooth_L[i * width + j + 1] - smooth_L[i * width + j - 1]); + gyCh1 = com1 - com2 + 2 * (smooth_L[(i + 1) * width + j] - smooth_L[(i - 1) * width + j]); + + // Sobel for channel2 + com1 = smooth_a[(i + 1) * width + j + 1] - smooth_a[(i - 1) * width + j - 1]; + com2 = smooth_a[(i - 1) * width + j + 1] - smooth_a[(i + 1) * width + j - 1]; + + gxCh2 = com1 + com2 + 2 * (smooth_a[i * width + j + 1] - smooth_a[i * width + j - 1]); + gyCh2 = com1 - com2 + 2 * (smooth_a[(i + 1) * width + j] - smooth_a[(i - 1) * width + j]); + + // Sobel for channel3 + com1 = smooth_b[(i + 1) * width + j + 1] - smooth_b[(i - 1) * width + j - 1]; + com2 = smooth_b[(i - 1) * width + j + 1] - smooth_b[(i + 1) * width + j - 1]; + + gxCh3 = com1 + com2 + 2 * (smooth_b[i * width + j + 1] - smooth_b[i * width + j - 1]); + gyCh3 = com1 - com2 + 2 * (smooth_b[(i + 1) * width + j] - smooth_b[(i - 1) * width + j]); + } + + int gxx = gxCh1 * gxCh1 + gxCh2 * gxCh2 + gxCh3 * gxCh3; + int gyy = gyCh1 * gyCh1 + gyCh2 * gyCh2 + gyCh3 * gyCh3; + int gxy = gxCh1 * gyCh1 + gxCh2 * gyCh2 + gxCh3 * gyCh3; + +#if 1 + // Di Zenzo's formulas from Gonzales & Woods - Page 337 + double theta = atan2(2.0 * gxy, (double)(gxx - gyy)) / 2; // Gradient Direction + int grad = (int)(sqrt(((gxx + gyy) + (gxx - gyy) * cos(2 * theta) + 2 * gxy * sin(2 * theta)) / 2.0) + 0.5); // Gradient Magnitude +#else + // Koschan & Abidi - 2005 - Signal Processing Magazine + double theta = atan2(2.0 * gxy, (double)(gxx - gyy)) / 2; // Gradient Direction + + double cosTheta = cos(theta); + double sinTheta = sin(theta); + int grad = (int)(sqrt(gxx * cosTheta * cosTheta + 2 * gxy * sinTheta * cosTheta + gyy * sinTheta * sinTheta) + 0.5); // Gradient Magnitude +#endif + + // Gradient is perpendicular to the edge passing through the pixel + if (theta >= -3.14159 / 4 && theta <= 3.14159 / 4) + dirImg[i * width + j] = EDGE_VERTICAL; + else + dirImg[i * width + j] = EDGE_HORIZONTAL; + + gradImg[i * width + j] = (ushort)grad; + + if (grad > max) + max = grad; + } + } + + // Scale the gradient values to 0-255 + double scale = 255.0 / max; + for (int i = 0; i < width * height; i++) + gradImg[i] = (ushort)(gradImg[i] * scale); +} + +void EdgeDrawingImpl::smoothChannel(const Mat& src, Mat& dst, double sigma) +{ + if (sigma == 1.0) + GaussianBlur(src, dst, Size(5, 5), 1); + else if (sigma == 1.5) + GaussianBlur(src, dst, Size(7, 7), 1.5); // seems to be better? + else + GaussianBlur(src, dst, Size(), sigma); +} + +//--------------------------------------------------------- +// Fix edge segments having one or two pixel fluctuations +// An example one pixel problem getting fixed: +// x +// x x --> xxx +// +// An example two pixel problem getting fixed: +// xx +// x x --> xxxx +// +void EdgeDrawingImpl::fixEdgeSegments(std::vector> map) +{ + /// First fix one pixel problems: There are four cases + for (int i = 0; i < (int)map.size(); i++) { + int cp = (int)map[i].size() - 2; // Current pixel index + int n2 = 0; // next next pixel index + + while (n2 < (int)map[i].size()) { + int n1 = cp + 1; // next pixel + + cp = cp % map[i].size(); // Roll back to the beginning + n1 = n1 % map[i].size(); // Roll back to the beginning + + int r = map[i][cp].y; + int c = map[i][cp].x; + + int r1 = map[i][n1].y; + int c1 = map[i][n1].x; + + int r2 = map[i][n2].y; + int c2 = map[i][n2].x; + + // 4 cases to fix + if (r2 == r - 2 && c2 == c) { + if (c1 != c) { + map[i][n1].x = c; + } + + cp = n2; + n2 += 2; + + } + else if (r2 == r + 2 && c2 == c) { + if (c1 != c) { + map[i][n1].x = c; + } + + cp = n2; + n2 += 2; + + } + else if (r2 == r && c2 == c - 2) { + if (r1 != r) { + map[i][n1].y = r; + } + + cp = n2; + n2 += 2; + + } + else if (r2 == r && c2 == c + 2) { + if (r1 != r) { + map[i][n1].y = r; + } + + cp = n2; + n2 += 2; + + } + else { + cp++; + n2++; + } + } + } +} + +void EdgeDrawingImpl::InitColorEDLib() +{ + if (LUT_Initialized) + return; + + double inc = 1.0 / LUT_SIZE; + for (int i = 0; i <= LUT_SIZE; i++) { + double d = i * inc; + + if (d >= 0.04045) LUT1[i] = pow(((d + 0.055) / 1.055), 2.4); + else LUT1[i] = d / 12.92; + } + + inc = 1.0 / LUT_SIZE; + for (int i = 0; i <= LUT_SIZE; i++) { + double d = i * inc; + + if (d > 0.008856) LUT2[i] = pow(d, 1.0 / 3.0); + else LUT2[i] = (7.787 * d) + (16.0 / 116.0); + } + + LUT_Initialized = true; +} + +bool EdgeDrawingImpl::LUT_Initialized = false; +double EdgeDrawingImpl::LUT1[LUT_SIZE + 1] = { 0 }; +double EdgeDrawingImpl::LUT2[LUT_SIZE + 1] = { 0 }; + } // namespace cv } // namespace ximgproc diff --git a/modules/ximgproc/src/edge_drawing_common.hpp b/modules/ximgproc/src/edge_drawing_common.hpp index 135b456615d..01dc5107ae6 100644 --- a/modules/ximgproc/src/edge_drawing_common.hpp +++ b/modules/ximgproc/src/edge_drawing_common.hpp @@ -13,15 +13,15 @@ #define ANCHOR_PIXEL 254 #define EDGE_PIXEL 255 -#define LEFT 1 -#define RIGHT 2 -#define UP 3 -#define DOWN 4 +#define ED_LEFT 1 +#define ED_RIGHT 2 +#define ED_UP 3 +#define ED_DOWN 4 -#define SOUTH_SOUTH 0 -#define SOUTH_EAST 1 -#define EAST_SOUTH 2 -#define EAST_EAST 3 +#define ED_SOUTH_SOUTH 0 +#define ED_SOUTH_EAST 1 +#define ED_EAST_SOUTH 2 +#define ED_EAST_EAST 3 // Circular arc, circle thresholds #define VERY_SHORT_ARC_ERROR 0.40 // Used for very short arcs (>= CANDIDATE_CIRCLE_RATIO1 && < CANDIDATE_CIRCLE_RATIO2) @@ -37,39 +37,45 @@ // Ellipse thresholds #define CANDIDATE_ELLIPSE_RATIO 0.50 // 50% -- If 50% of the ellipse is detected, it may be candidate for validation #define ELLIPSE_ERROR 1.50 // Used for ellipses. (used to be 1.65 for what reason?) -#define MAX_GRAD_VALUE 128*256 +#define ED_MAX_GRAD_VALUE 128*256 using namespace std; using namespace cv; +#define TABSIZE 100000 +#define MAX_LUT_SIZE 1024 +#define RELATIVE_ERROR_FACTOR 100.0 + class NFALUT { public: - NFALUT(int size, double _prob, int _w, int _h); + NFALUT(int size, double _prob, double _logNT); ~NFALUT(); int* LUT; // look up table int LUTSize; double prob; - int w, h; + double logNT; bool checkValidationByNFA(int n, int k); static double myAtan2(double yy, double xx); private: double nfa(int n, int k); - static double Comb(double n, double k); + static double log_gamma_lanczos(double x); + static double log_gamma_windschitl(double x); + static double log_gamma(double x); + static int double_equal(double a, double b); }; -NFALUT::NFALUT(int size, double _prob, int _w, int _h) +NFALUT::NFALUT(int size, double _prob, double _logNT) { LUTSize = size > 60 ? 60 : size; LUT = new int[LUTSize]; - w = _w; - h = _h; prob = _prob; + logNT = _logNT; LUT[0] = 1; int j = 1; @@ -77,24 +83,23 @@ NFALUT::NFALUT(int size, double _prob, int _w, int _h) { LUT[i] = LUTSize + 1; double ret = nfa(i, j); - if (ret >= 1.0) + if (ret < 0) { while (j < i) { j++; ret = nfa(i, j); - if (ret <= 1.0) + if (ret >= 0) break; } - if (ret >= 1.0) + if (ret < 0) continue; } LUT[i] = j; } } - NFALUT::~NFALUT() { delete[] LUT; @@ -103,7 +108,7 @@ NFALUT::~NFALUT() bool NFALUT::checkValidationByNFA(int n, int k) { if (n >= LUTSize) - return nfa(n, k) <= 1.0; + return nfa(n, k) >= 0.0; else return k >= LUT[n]; } @@ -118,28 +123,140 @@ double NFALUT::myAtan2(double yy, double xx) return angle / 180 * CV_PI; } -double NFALUT::Comb(double n, double k) //fast combination computation +double NFALUT::nfa(int n, int k) { - if (k > n) - return 0; + static double inv[TABSIZE]; /* table to keep computed inverse values */ + double tolerance = 0.1; /* an error of 10% in the result is accepted */ + double log1term, term, bin_term, mult_term, bin_tail, err, p_term; + int i; + + /* check parameters */ + if (n < 0 || k<0 || k>n || prob <= 0.0 || prob >= 1.0) return -1.0; + + /* trivial cases */ + if (n == 0 || k == 0) return -logNT; + if (n == k) return -logNT - (double)n * log10(prob); + + /* probability term */ + p_term = prob / (1.0 - prob); + + /* compute the first term of the series */ + /* + binomial_tail(n,k,p) = sum_{i=k}^n bincoef(n,i) * p^i * (1-p)^{n-i} + where bincoef(n,i) are the binomial coefficients. + But + bincoef(n,k) = gamma(n+1) / ( gamma(k+1) * gamma(n-k+1) ). + We use this to compute the first term. Actually the log of it. + */ + log1term = log_gamma((double)n + 1.0) - log_gamma((double)k + 1.0) + - log_gamma((double)(n - k) + 1.0) + + (double)k * log(prob) + (double)(n - k) * log(1.0 - prob); + term = exp(log1term); + + /* in some cases no more computations are needed */ + if (double_equal(term, 0.0)) { /* the first term is almost zero */ + if ((double)k > (double)n * prob) /* at begin or end of the tail? */ + return -log1term / M_LN10 - logNT; /* end: use just the first term */ + else + return -logNT; /* begin: the tail is roughly 1 */ + } + + /* compute more terms if needed */ + bin_tail = term; + for (i = k + 1; i <= n; i++) { + /* + As + term_i = bincoef(n,i) * p^i * (1-p)^(n-i) + and + bincoef(n,i)/bincoef(n,i-1) = n-1+1 / i, + then, + term_i / term_i-1 = (n-i+1)/i * p/(1-p) + and + term_i = term_i-1 * (n-i+1)/i * p/(1-p). + 1/i is stored in a table as they are computed, + because divisions are expensive. + p/(1-p) is computed only once and stored in 'p_term'. + */ + bin_term = (double)(n - i + 1) * (i < TABSIZE ? + (inv[i] != 0.0 ? inv[i] : (inv[i] = 1.0 / (double)i)) : + 1.0 / (double)i); + + mult_term = bin_term * p_term; + term *= mult_term; + bin_tail += term; + + if (bin_term < 1.0) { + /* When bin_term<1 then mult_term_ji. + Then, the error on the binomial tail when truncated at + the i term can be bounded by a geometric series of form + term_i * sum mult_term_i^j. */ + err = term * ((1.0 - pow(mult_term, (double)(n - i + 1))) / + (1.0 - mult_term) - 1.0); + + /* One wants an error at most of tolerance*final_result, or: + tolerance * abs(-log10(bin_tail)-logNT). + Now, the error that can be accepted on bin_tail is + given by tolerance*final_result divided by the derivative + of -log10(x) when x=bin_tail. that is: + tolerance * abs(-log10(bin_tail)-logNT) / (1/bin_tail) + Finally, we truncate the tail if the error is less than: + tolerance * abs(-log10(bin_tail)-logNT) * bin_tail */ + if (err < tolerance * fabs(-log10(bin_tail) - logNT) * bin_tail) break; + } + } + + return -log10(bin_tail) - logNT; +} - double r = 1; - for (double d = 1; d <= k; ++d) +double NFALUT::log_gamma_lanczos(double x) +{ + static double q[7] = { 75122.6331530, 80916.6278952, 36308.2951477, + 8687.24529705, 1168.92649479, 83.8676043424, + 2.50662827511 }; + double a = (x + 0.5) * log(x + 5.5) - (x + 5.5); + double b = 0.0; + int n; + + for (n = 0; n < 7; n++) { - r *= n--; - r /= d; + a -= log(x + (double)n); + b += q[n] * pow(x, (double)n); } - return r; + return a + log(b); } -double NFALUT::nfa(int n, int k) +double NFALUT::log_gamma_windschitl(double x) { - double sum = 0; - double p = 0.125; - for (int i = k; i <= n; i++) - sum += Comb(n, i) * pow(p, i) * pow(1 - p, n - i); + return 0.918938533204673 + (x - 0.5) * log(x) - x + + 0.5 * x * log(x * sinh(1 / x) + 1 / (810.0 * pow(x, 6.0))); +} + +double NFALUT::log_gamma(double x) +{ + return x > 15 ? log_gamma_windschitl(x) : log_gamma_lanczos(x); +} + +int NFALUT::double_equal(double a, double b) +{ + double abs_diff, aa, bb, abs_max; - return sum * w * w * h * h; + /* trivial case */ + if (a == b) return true; + + abs_diff = fabs(a - b); + aa = fabs(a); + bb = fabs(b); + abs_max = aa > bb ? aa : bb; + + /* DBL_MIN is the smallest normalized number, thus, the smallest + number whose relative error is bounded by DBL_EPSILON. For + smaller numbers, the same quantization steps as for DBL_MIN + are used. Then, for smaller numbers, a meaningful "relative" + error should be computed by dividing the difference by DBL_MIN. */ + if (abs_max < DBL_MIN) abs_max = DBL_MIN; + + /* equal if relative error <= factor x eps */ + return (abs_diff / abs_max) <= (RELATIVE_ERROR_FACTOR * DBL_EPSILON); } struct StackNode @@ -220,18 +337,19 @@ struct mEllipse { // Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0 // struct EllipseEquation { - double coeff[7]; // coeff[1] = A - - EllipseEquation() { - for (int i = 0; i<7; i++) coeff[i] = 0; - } - - double A() { return coeff[1]; } - double B() { return coeff[2]; } - double C() { return coeff[3]; } - double D() { return coeff[4]; } - double E() { return coeff[5]; } - double F() { return coeff[6]; } + static constexpr int COEFF_SIZE = 7; + double coeff[COEFF_SIZE]; // coeff[1] = A + + // Constructor using an initialization list + EllipseEquation() : coeff{} {} + + // Accessor functions marked as const + double A() const { return coeff[1]; } + double B() const { return coeff[2]; } + double C() const { return coeff[3]; } + double D() const { return coeff[4]; } + double E() const { return coeff[5]; } + double F() const { return coeff[6]; } }; // ================================ CIRCLES ================================ diff --git a/modules/ximgproc/test/test_fld.cpp b/modules/ximgproc/test/test_fld.cpp index 24022a38087..738597b4aae 100644 --- a/modules/ximgproc/test/test_fld.cpp +++ b/modules/ximgproc/test/test_fld.cpp @@ -7,7 +7,7 @@ namespace opencv_test { namespace { const Size img_size(320, 240); const int FLD_TEST_SEED = 0x134679; -const int EPOCHS = 10; +const int EPOCHS = 5; class FLDBase : public testing::Test { @@ -44,6 +44,7 @@ class ximgproc_ED: public FLDBase { detector = createEdgeDrawing(); } + string filename = cvtest::TS::ptr()->get_data_path() + "cv/imgproc/beads.jpg"; protected: Ptr detector; @@ -275,16 +276,18 @@ TEST_F(ximgproc_ED, rotatedRect) ASSERT_EQ(EPOCHS, passedtests); } -TEST_F(ximgproc_ED, ManySmallCircles) +TEST_F(ximgproc_ED, detectLinesAndEllipses) { - string picture_name = "cv/imgproc/beads.jpg"; + Mat gray_image; + vector ellipses; - string filename = cvtest::TS::ptr()->get_data_path() + picture_name; - test_image = imread(filename, IMREAD_GRAYSCALE); + test_image = imread(filename); EXPECT_FALSE(test_image.empty()) << "Invalid test image: " << filename; - vector ellipses; - detector->detectEdges(test_image); + cvtColor(test_image, test_image, COLOR_BGR2BGRA); + cvtColor(test_image, gray_image, COLOR_BGR2GRAY); + + detector->detectEdges(gray_image); detector->detectEllipses(ellipses); detector->detectLines(lines); @@ -295,5 +298,34 @@ TEST_F(ximgproc_ED, ManySmallCircles) EXPECT_GE(lines.size(), lines_size); EXPECT_LE(lines.size(), lines_size + 2); EXPECT_EQ(ellipses.size(), ellipses_size); + + detector->params.PFmode = true; + + detector->detectEdges(gray_image); + detector->detectEllipses(ellipses); + detector->detectLines(lines); + + segments_size = 2717; + lines_size = 6197; + ellipses_size = 2446; + EXPECT_EQ(detector->getSegments().size(), segments_size); + EXPECT_GE(lines.size(), lines_size); + EXPECT_LE(lines.size(), lines_size + 2); + EXPECT_EQ(ellipses.size(), ellipses_size); + + detector->params.MinLineLength = 10; + + detector->detectEdges(test_image); + detector->detectEllipses(ellipses); + detector->detectLines(lines); + detector->detectEllipses(ellipses); + segments_size = 6230; + lines_size = 11133; + ellipses_size = 2431; + EXPECT_EQ(detector->getSegments().size(), segments_size); + EXPECT_GE(lines.size(), lines_size); + EXPECT_LE(lines.size(), lines_size + 2); + EXPECT_GE(ellipses.size(), ellipses_size); + EXPECT_LE(ellipses.size(), ellipses_size + 2); } }} // namespace