-
Notifications
You must be signed in to change notification settings - Fork 201
/
Copy pathsface.py
63 lines (52 loc) · 2.22 KB
/
sface.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
# This file is part of OpenCV Zoo project.
# It is subject to the license terms in the LICENSE file found in the same directory.
#
# Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved.
# Third party copyrights are property of their respective owners.
import numpy as np
import cv2 as cv
class SFace:
def __init__(self, modelPath, disType=0, backendId=0, targetId=0):
self._modelPath = modelPath
self._backendId = backendId
self._targetId = targetId
self._model = cv.FaceRecognizerSF.create(
model=self._modelPath,
config="",
backend_id=self._backendId,
target_id=self._targetId)
self._disType = disType # 0: cosine similarity, 1: Norm-L2 distance
assert self._disType in [0, 1], "0: Cosine similarity, 1: norm-L2 distance, others: invalid"
self._threshold_cosine = 0.363
self._threshold_norml2 = 1.128
@property
def name(self):
return self.__class__.__name__
def setBackendAndTarget(self, backendId, targetId):
self._backendId = backendId
self._targetId = targetId
self._model = cv.FaceRecognizerSF.create(
model=self._modelPath,
config="",
backend_id=self._backendId,
target_id=self._targetId)
def _preprocess(self, image, bbox):
if bbox is None:
return image
else:
return self._model.alignCrop(image, bbox)
def infer(self, image, bbox=None):
# Preprocess
inputBlob = self._preprocess(image, bbox)
# Forward
features = self._model.feature(inputBlob)
return features
def match(self, image1, face1, image2, face2):
feature1 = self.infer(image1, face1)
feature2 = self.infer(image2, face2)
if self._disType == 0: # COSINE
cosine_score = self._model.match(feature1, feature2, self._disType)
return cosine_score, 1 if cosine_score >= self._threshold_cosine else 0
else: # NORM_L2
norml2_distance = self._model.match(feature1, feature2, self._disType)
return norml2_distance, 1 if norml2_distance <= self._threshold_norml2 else 0