forked from Azure/azureml-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
2-aml-comparison-of-sku-job.py
181 lines (144 loc) · 5.82 KB
/
2-aml-comparison-of-sku-job.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# description: Experiment comparing training performance of GLUE finetuning task with differing hardware.
"""Experiment comparing training performance of GLUE finetuning task with differing hardware.
This script prepares the `src/finetune_glue.py` script to run in Azure ML using
different compute clusters. The idea of this experiment is to compare training
times between different VM SKUs.
To run this script you need:
- An Azure ML Workspace
- A ComputeTarget to train on (we recommend a GPU-based compute cluster)
- Azure ML Environment:
- create the required python environment by running the `aml_utils.py` script
- This registers two environments "transformers-datasets-cpu" and "transformers-datasets-gpu"
Note:
Arguments passed to `src/finetune_glue.py` will override TrainingArguments:
https://huggingface.co/transformers/main_classes/trainer.html#trainingarguments
"""
import argparse
from pathlib import Path
from azureml.core import Workspace # connect to workspace
from azureml.core import ComputeTarget # specify AzureML compute resources
from azureml.core import Experiment # connect/create experiments
from azureml.core import Environment # manage e.g. Python environments
from azureml.core import ScriptRunConfig # prepare code, an run configuration
from azureml.core import Run # used for type hints
def transformers_environment(use_gpu=True):
"""Prepares Azure ML Environment with transformers library.
Note: We install transformers library from source. See requirements file for
full list of dependencies.
Args:
use_gpu (bool): If true, Azure ML will use gpu-enabled docker image
as base.
Return:
Azure ML Environment with huggingface libraries needed to perform GLUE
finetuning task.
"""
pip_requirements_path = str(Path(__file__).parent.joinpath("requirements.txt"))
print(f"Create Azure ML Environment from {pip_requirements_path}")
if use_gpu:
env_name = "transformers-gpu"
env = Environment.from_pip_requirements(
name=env_name,
file_path=pip_requirements_path,
)
env.docker.base_image = (
"mcr.microsoft.com/azureml/intelmpi2018.3-cuda10.0-cudnn7-ubuntu16.04"
)
else:
env_name = "transformers-cpu"
env = Environment.from_pip_requirements(
name=env_name,
file_path=pip_requirements_path,
)
return env
def submit_glue_finetuning_to_aml(
glue_task: str,
model_checkpoint: str,
environment: Environment,
target: ComputeTarget,
experiment: Experiment,
) -> Run:
"""Submit GLUE finetuning task to Azure ML.
This method prepares the configuration (compute target and environment) together
with the training code (see src) into a ScriptRunConfig, and submits it to Azure
ML.
Args:
glue_task (str): Name of the GLUE finetuning task. One of: "cola", "mnli",
"mnli-mm", "mrpc", "qnli", "qqp", "rte", "sst2", "stsb", "wnli".
model_checkpoint (str): Name of the transformers pretrained model to use
for finetuning. See https://huggingface.co/transformers/pretrained_models.html
environment (Environment): The Azure ML environment to use.
target (ComputeTarget): The Azure ML compute target to train on.
experiment (Experiment): The Azure ML experiment used to submit the run.
Return:
The Azure ML Run instance associated to this finetuning submission.
"""
# set up script run configuration
config = ScriptRunConfig(
source_directory=str(Path(__file__).parent.joinpath("src")),
script="finetune_glue.py",
arguments=[
"--output_dir",
"outputs",
"--task",
glue_task,
"--model_checkpoint",
model_checkpoint,
# training args
"--num_train_epochs",
5,
"--learning_rate",
2e-5,
"--per_device_train_batch_size",
16,
"--per_device_eval_batch_size",
16,
"--disable_tqdm",
True,
],
compute_target=target,
environment=environment,
)
# submit script to AML
run = experiment.submit(config)
run.set_tags(
{
"task": glue_task,
"target": target.name,
"environment": environment.name,
"model": model_checkpoint,
}
)
return run
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--glue_task", default="cola", help="Name of GLUE task used for finetuning."
)
parser.add_argument(
"--model_checkpoint",
default="distilbert-base-uncased",
help="Pretrained transformers model name.",
)
args = parser.parse_args()
print(
f"Finetuning {args.glue_task} with model {args.model_checkpoint} on Azure ML..."
)
# get Azure ML resources
ws: Workspace = Workspace.from_config()
env: Environment = transformers_environment(use_gpu=True)
exp: Experiment = Experiment(ws, "transformers-glue-finetuning-sku-comparison")
runs = []
target_names = ["gpu-cluster", "gpu-K80-2"]
for target_name in target_names:
target: ComputeTarget = ws.compute_targets[target_name]
run: Run = submit_glue_finetuning_to_aml(
glue_task=args.glue_task, # one of: "cola", "mnli", "mnli-mm", "mrpc", "qnli", "qqp", "rte", "sst2", "stsb", "wnli"
model_checkpoint=args.model_checkpoint, # try: "bert-base-uncased"
environment=env,
target=target,
experiment=exp,
)
runs.append(run)
print(f"Submitted to {target.name}: {run.get_portal_url()}\n")
for run in runs:
run.wait_for_completion(show_output=True)