-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtrain_evaluate.py
259 lines (223 loc) · 10.8 KB
/
train_evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import tensorflow as tf
from Models import VQA_model_attention
import data_loader
import argparse
import numpy as np
from os.path import isfile, join
import utils
import scipy.misc
import gc
import time
from random import shuffle
import shutil
import os
from scipy import misc
import json
import pickle
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--residual_channels', type=int, default=512,
help='residual_channels')
parser.add_argument('--data_dir', type=str, default='Data',
help='Data directory')
parser.add_argument('--batch_size', type=int, default=64,
help='Batch Size')
parser.add_argument('--learning_rate', type=float, default=0.001,
help='Batch Size')
parser.add_argument('--epochs', type=int, default=25,
help='Expochs')
parser.add_argument('--max_steps', type=int, default=50000,
help='max steps, set 1 for evaluating the model')
parser.add_argument('--version', type=int, default=1,
help='VQA data version')
parser.add_argument('--sample_every', type=int, default=200,
help='Debug every x iterations')
parser.add_argument('--evaluate_every', type=int, default=6000,
help='Evaluate every x steps')
parser.add_argument('--resume_model', type=str, default=None,
help='Trained Model Path')
parser.add_argument('--training_log_file', type=str, default='Data/training_log.json',
help='Log file for accuracy')
parser.add_argument('--feature_layer', type=str, default="block4",
help='CONV FEATURE LAYER, fc7, pool5 or block4')
parser.add_argument('--cnn_model', type=str, default="resnet",
help='CNN model')
parser.add_argument('--text_model', type=str, default="bytenet",
help='bytenet/lstm')
# evaluation_steps = [6000, 12000, 18000, 25000, 30000, 35000, 50000]
# evaluation_steps = [400, 800, 1200, 1600, 2000, 2400, 2800]
args = parser.parse_args()
print "Reading QA DATA", args.version
qa_data = data_loader.load_questions_answers(args.version, args.data_dir)
shuffle(qa_data['training'])
shuffle(qa_data['validation'])
ans_vocab_rev = qa_data['index_to_ans']
ques_vocab_rev = qa_data['index_to_qw']
print "Reading conv features"
conv_features, image_id_list = data_loader.load_conv_features('train', args.cnn_model, args.feature_layer)
# image_id_map = {image_id_list[i] : i for i in xrange(len(image_id_list))}
image_id_map = {image_id_list[i] : i for i in xrange(len(image_id_list))}
conv_features_val, image_id_list_val = data_loader.load_conv_features('val', args.cnn_model, args.feature_layer)
image_id_map_val = {image_id_list_val[i] : i for i in xrange(len(image_id_list_val))}
conv_features = data_loader.load_conv_features('train', args.cnn_model, args.feature_layer, load_image_list = False)
model_options = {
'question_vocab_size' : len(qa_data['index_to_qw']),
'residual_channels' : args.residual_channels,
'ans_vocab_size' : len(qa_data['index_to_ans']),
'filter_width' : 3,
'img_dim' : 14,
'img_channels' : 2048,
'dilations' : [ 1, 2, 4, 8,
1, 2, 4, 8,
],
'text_model' : args.text_model,
'dropout_keep_prob' : 0.6,
'max_question_length' : qa_data['max_question_length'],
'num_answers' : 10
}
print "MODEL OPTIONS"
print model_options
model = VQA_model_attention.VQA_model(model_options)
model.build_model()
train_op = tf.train.AdamOptimizer(args.learning_rate).minimize(model.loss)
model.build_generator(reuse = True)
sess = tf.InteractiveSession()
tf.initialize_all_variables().run()
saver = tf.train.Saver()
if args.resume_model:
saver.restore(sess, args.resume_model)
step = 0
training_log = []
for epoch in xrange(args.epochs):
batch_no = 0
while (batch_no*args.batch_size) < len(qa_data['training']):
start = time.clock()
question, answer, image_features, image_ids, _ = get_batch(
batch_no, args.batch_size, qa_data['training'],
conv_features, image_id_map, 'train', model_options
)
_, loss_value = sess.run([train_op, model.loss],
feed_dict={
model.question: question,
model.image_features: image_features,
model.answers: answer
}
)
end = time.clock()
print "Time for batch of photos", end - start
print "Time for one epoch (mins)", len(qa_data['training'])/args.batch_size * (end - start)/60.0
batch_no += 1
step += 1
print "LOSS", loss_value, batch_no,len(qa_data)/args.batch_size, step, epoch
print "****"
if step % args.sample_every == 0:
try:
shutil.rmtree('Data/samples')
except:
pass
os.makedirs('Data/samples')
pred_answer, prob1, prob2 = sess.run([model.g_predictions, model.g_prob1, model.g_prob2],
feed_dict = {
model.g_question : question,
model.g_image_features : image_features
})
pred_ans_text = utils.answer_indices_to_text(pred_answer, ans_vocab_rev)
# just a sample
actual_ans_text = utils.answer_indices_to_text(answer[:,0], ans_vocab_rev)
sample_data = []
print "Actual vs Prediction"
for sample_i in range(len(pred_ans_text)):
print actual_ans_text[sample_i], pred_ans_text[sample_i]
question_text = utils.question_indices_to_text(question[sample_i], ques_vocab_rev)
image_array = utils.image_array_from_image_id(image_ids[sample_i], 'train')
blend1 = utils.get_blend_map(image_array, prob1[sample_i], overlap = True)
blend2 = utils.get_blend_map(image_array, prob2[sample_i], overlap = True)
sample_data.append({
'question' : question_text,
'actual_answer' : actual_ans_text[sample_i],
'predicted_answer' : pred_ans_text[sample_i],
'image_id' : image_ids[sample_i],
'batch_index' : sample_i
})
misc.imsave('Data/samples/{}_actual_image.jpg'.format(sample_i), image_array)
misc.imsave('Data/samples/{}_blend1.jpg'.format(sample_i), blend1)
misc.imsave('Data/samples/{}_blend2.jpg'.format(sample_i), blend2)
f = open('Data/samples/sample.json', 'wb')
f.write(json.dumps(sample_data))
f.close()
shutil.make_archive('Data/samples', 'zip', 'Data/samples')
gc.collect()
if step % args.evaluate_every == 0:
accuracy = evaluate_model(model, qa_data, args,
model_options, sess, conv_features_val, image_id_map_val)
print "ACCURACY>> ", accuracy, step, epoch
training_log.append({
'step' : step,
'epoch' : epoch,
'accuracy' : accuracy,
})
f = open(args.training_log_file, 'wb')
f.write(json.dumps(training_log))
f.close()
save_path = saver.save(sess, "Data/Models{}/model{}.ckpt".format(args.version, epoch))
gc.collect()
# to avoid h5py from slowing down.
conv_features = data_loader.load_conv_features('train', args.cnn_model, args.feature_layer,
load_image_list = False)
if step >= args.max_steps:
break
def evaluate_model(model, qa_data, args, model_options, sess, conv_features, image_id_map):
# to avoid h5py from slowing down.
conv_features = data_loader.load_conv_features('val', args.cnn_model, args.feature_layer,
load_image_list = False)
prediction_check = []
ans_vocab_rev = qa_data['index_to_ans']
print "loading conv feats"
batch_no = 0
while (batch_no*args.batch_size) < len(qa_data['validation']):
question, answer, image_features, image_ids, ans_freq_batch = get_batch(
batch_no, args.batch_size, qa_data['validation'],
conv_features, image_id_map, 'val', model_options
)
[predicted] = sess.run([model.g_predictions], feed_dict = {
model.g_question : question,
model.g_image_features : image_features
})
pred_ans_text = utils.answer_indices_to_text(predicted, ans_vocab_rev)
for bi, pred_ans in enumerate(pred_ans_text):
if pred_ans in ans_freq_batch[bi]:# and ans_freq_batch[bi][pred_ans] >= 3:
prediction_check.append(min(1.0, ans_freq_batch[bi][pred_ans]/3.0))
# prediction_check.append(1.0)
else:
prediction_check.append(0.0)
# print pred_ans, ans_freq_batch, prediction_check[-1]
accuracy = np.sum(prediction_check, dtype = "float32")/len(prediction_check)
print "Eavluating", batch_no, len(qa_data)/args.batch_size, accuracy
batch_no += 1
return accuracy
def get_batch(batch_no, batch_size,
qa, conv_features, image_id_map,
split, model_options):
img_dim = model_options['img_dim']
img_channels = model_options['img_channels']
si = (batch_no * batch_size)%len(qa)
ei = min(len(qa), si + batch_size)
n = ei - si
max_question_length = model_options['max_question_length']
sentence_batch = np.ndarray( (n, max_question_length), dtype = 'int32')
answer_batch = np.zeros((n, model_options['num_answers']), dtype = 'int32' )
conv_batch = np.ndarray((n, img_dim, img_dim, img_channels), dtype = 'float32')
image_ids = []
ans_freq_batch = []
count = 0
for i in range(si, ei):
sentence_batch[count] = qa[i]['question_indices']
answer_batch[count] = qa[i]['all_answers_indices']
conv_index = image_id_map[ qa[i]['image_id'] ]
conv_batch[count] = np.reshape(conv_features[conv_index], [14, 14, 2048] )
image_ids.append(qa[i]['image_id'] )
ans_freq_batch.append(qa[i]['ans_freq'])
count += 1
return sentence_batch, answer_batch, conv_batch, image_ids, ans_freq_batch
if __name__ == '__main__':
main()