-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
273 lines (214 loc) · 8.47 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
from contextlib import nullcontext
from torch.nn import functional as F
from src.utils import TOKENIZER, Dataset
from pedalboard import Pedalboard, Reverb, Compressor, Gain, Limiter
from pedalboard.io import AudioFile
import pandas as pd
import subprocess
import pretty_midi
import gradio as gr
import time
import copy
import types
import torch
import random
import os
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.allow_tf32 = True
torch.backends.cuda.matmul.allow_tf32 = True
in_space = os.getenv("SYSTEM") == "spaces"
n_layer = 12
n_embd = 768
ctx_len = 2048
os.environ['RWKV_FLOAT_MODE'] = 'fp32'
os.environ['RWKV_RUN_DEVICE'] = 'cuda' if torch.cuda.is_available() else 'cpu'
model_type = 'RWKV'
MODEL_NAME = 'checkpoints/model'
LENGTH_PER_TRIAL = round((2000) / 13) * 13
TEMPERATURE = 1.0
from src.model_run import RWKV_RNN
model = RWKV_RNN(MODEL_NAME, os.environ['RWKV_RUN_DEVICE'], model_type, n_layer, n_embd, ctx_len)
tokenizer = TOKENIZER()
temp_dir = 'temp'
if not os.path.exists(temp_dir):
os.makedirs(temp_dir)
def clear_midi(dir):
for file in os.listdir(dir):
if file.endswith('.mid'):
os.remove(os.path.join(dir, file))
clear_midi(temp_dir)
ctx_seed = "000000000000\n"
ctx = tokenizer.encode(ctx_seed)
src_len = len(ctx)
src_ctx = ctx.copy()
def humanize_notes(midi_events):
def humanize(value):
if value != 0:
humanize_offset = random.choice([-0.20, 0.20])
return max(0, int(value + humanize_offset))
return value
midi_events['start'] = midi_events['start'].apply(humanize)
midi_events['end'] = midi_events['end'].apply(humanize)
max_tick = 8 * 384
midi_events['end'] = midi_events['end'].clip(upper=max_tick)
return midi_events
def generate_midi(LENGTH_PER_TRIAL, src_ctx, model, src_len, ctx_len, TEMPERATURE, top_k, tokenizer, ctx_seed, bpm):
midi_seq = []
for TRIAL in range(1):
t_begin = time.time_ns()
if TRIAL > 0:
midi_seq.append("\n")
ctx = src_ctx.copy()
model.clear()
midi_tokens = []
if TRIAL == 0:
init_state = types.SimpleNamespace()
for i in range(src_len):
x = ctx[:i+1]
if i == src_len - 1:
init_state.out = model.run(x)
else:
model.run(x)
model.save(init_state)
else:
model.load(init_state)
midi_seq.append(ctx_seed)
for i in range(src_len, src_len + LENGTH_PER_TRIAL):
x = ctx[:i+1]
x = x[-ctx_len:]
if i == src_len:
out = copy.deepcopy(init_state.out)
else:
out = model.run(x)
char = tokenizer.sample_logits(out, x, ctx_len, temperature=TEMPERATURE, top_k=top_k).item()
midi_tokens.append(char)
if len(midi_tokens) > 2:
midi_tokens.pop(0)
if midi_tokens == [11, 10]: # stop token pattern
break
midi_seq.append(tokenizer.decode([int(char)]))
if midi_tokens != [11, 10]:
ctx += [char]
t_end = time.time_ns()
trim_seq = "".join(midi_seq)
events = trim_seq.split("\n")
midi_events = []
sequence = []
rndm_num = 895645
for event in events:
if event.strip() == "":
midi_events.append(sequence)
sequence = []
rndm_num = random.randint(100000, 999999)
try:
pitch = int(event[0:2])
velocity = int(event[2:4])
start = int(event[4:8])
end = int(event[8:12])
except ValueError:
pitch = 0
velocity = 0
start = 0
end = 0
sequence.append({'file_name': f'rwkv_{rndm_num}', 'pitch': pitch, 'velocity': velocity, 'start': start, 'end': end})
if sequence:
midi_events.append(sequence)
midi_events = pd.DataFrame([pd.Series(event) for sequence in midi_events for event in sequence])
midi_events = midi_events[['file_name', 'pitch', 'velocity', 'start', 'end']]
midi_events = humanize_notes(midi_events)
midi_events = midi_events.sort_values(by=['file_name', 'start']).reset_index(drop=True)
midi_events = midi_events[(midi_events['start'] < 3072) & (midi_events['end'] <= 3072)]
for file_name, events in midi_events.groupby('file_name'):
midi_obj = pretty_midi.PrettyMIDI(initial_tempo=bpm, resolution=96)
instrument = pretty_midi.Instrument(0)
midi_obj.instruments.append(instrument)
for _, event in events.iterrows():
note = pretty_midi.Note(
pitch=event['pitch'],
velocity=event['velocity'],
start=midi_obj.tick_to_time(event['start']),
end=midi_obj.tick_to_time(event['end'])
)
instrument.notes.append(note)
midi_path = os.path.join(temp_dir, 'output.mid')
midi_obj.write(midi_path)
return midi_path
def render_wav(midi_file, uploaded_sf2=None, output_level='2.0'):
sf2_dir = 'sf2'
audio_format = 's16'
sample_rate = '44100'
gain = str(output_level)
if uploaded_sf2:
sf2_file = uploaded_sf2
else:
sf2_files = [f for f in os.listdir(os.path.join(sf2_dir)) if f.endswith('.sf2')]
if not sf2_files:
raise ValueError("No SoundFont (.sf2) file found in directory.")
sf2_file = os.path.join(sf2_dir, random.choice(sf2_files))
output_wav = os.path.join(temp_dir, 'output.wav')
with open(os.devnull, 'w') as devnull:
command = [
'fluidsynth', '-ni', sf2_file, midi_file, '-F', output_wav, '-r', str(sample_rate),
'-o', f'audio.file.format={audio_format}', '-g', str(gain)
]
subprocess.call(command, stdout=devnull, stderr=devnull)
return output_wav
def generate_and_return_files(bpm, temperature, top_k, uploaded_sf2=None, output_level='2.0'):
midi_events = generate_midi(
LENGTH_PER_TRIAL, src_ctx, model, src_len, ctx_len, temperature, top_k,
tokenizer, ctx_seed, bpm
)
midi_file = 'temp/output.mid'
wav_raw = render_wav(midi_file, uploaded_sf2, output_level)
wav_fx = os.path.join(temp_dir, 'output_fx.wav')
sfx_settings = [
{
'board': Pedalboard([
Reverb(room_size=0.50, wet_level=0.30, dry_level=0.75, width=1.0),
Compressor(threshold_db=-4.0, ratio=4.0, attack_ms=0.0, release_ms=300.0),
])
}
]
for setting in sfx_settings:
board = setting['board']
with AudioFile(wav_raw) as f:
with AudioFile(wav_fx, 'w', f.samplerate, f.num_channels) as o:
while f.tell() < f.frames:
chunk = f.read(int(f.samplerate))
effected = board(chunk, f.samplerate, reset=False)
o.write(effected)
return midi_file, wav_fx
custom_css = """
#generate-btn {
background-color: #6366f1 !important;
color: white !important;
border: none !important;
font-size: 16px;
padding: 10px 20px;
border-radius: 5px;
cursor: pointer;
}
#generate-btn:hover {
background-color: #4f51c5 !important;
}
"""
with gr.Blocks(css=custom_css, theme="soft") as iface:
gr.Markdown("<h1 style='font-weight: bold; text-align: center;'>Pop-K</h1>")
gr.Markdown("<p style='text-align:center;'>Pop-K is a small RWKV model that generates pop melodies in C major and A minor.</p>")
with gr.Row():
with gr.Column(scale=1):
bpm = gr.Slider(minimum=50, maximum=200, step=1, value=120, label="BPM")
temperature = gr.Slider(minimum=0.1, maximum=2.0, step=0.01, value=1.0, label="Temperature")
top_k = gr.Slider(minimum=1, maximum=32, step=1, value=20, label="Top-K")
output_level = gr.Slider(minimum=0, maximum=3, step=0.10, value=2.0, label="Output Level")
soundfont = gr.File(label="Optional: Upload SoundFont (preset=0, bank=0, max_size=100mb)")
with gr.Column(scale=1):
midi_file = gr.File(label="MIDI File Output")
audio_file = gr.Audio(label="Generated Audio Output", type="filepath")
generate_button = gr.Button("Generate", elem_id="generate-btn")
generate_button.click(
fn=generate_and_return_files,
inputs=[bpm, temperature, top_k, soundfont, output_level],
outputs=[midi_file, audio_file]
)
iface.launch(share=True)