-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathdataloader.py
42 lines (32 loc) · 1.5 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import shutil
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader, random_split
from torchvision import transforms, datasets
def load_cifar():
transform = transforms.Compose([transforms.Resize((96, 96)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5], std=[0.5])])
train_dataset = datasets.CIFAR10(
'./data', train=True, download=True, transform=transform)
test_dataset = datasets.CIFAR10(
'./data', train=False, download=True, transform=transform)
# Split dataset into training set and validation set.
train_dataset, val_dataset = random_split(train_dataset, (45000, 5000))
print("Image Shape: {}".format(
train_dataset[0][0].numpy().shape), end='\n\n')
print("Training Set: {} samples".format(len(train_dataset)))
print("Validation Set: {} samples".format(len(val_dataset)))
print("Test Set: {} samples".format(len(test_dataset)))
if torch.cuda.is_available():
BATCH_SIZE = 1024
else:
BATCH_SIZE = 32
# Create iterator.
train_loader = DataLoader(
train_dataset, batch_size=BATCH_SIZE, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=BATCH_SIZE, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=True)
# Delete the data/ folder.
shutil.rmtree('./data')
return train_loader, val_loader, test_loader