forked from zeromq/libzmq
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathradix_tree.cpp
551 lines (462 loc) · 19.3 KB
/
radix_tree.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
/* SPDX-License-Identifier: MPL-2.0 */
#include "precompiled.hpp"
#include "macros.hpp"
#include "err.hpp"
#include "radix_tree.hpp"
#include <stdlib.h>
#include <string.h>
#include <iterator>
#include <vector>
node_t::node_t (unsigned char *data_) : _data (data_)
{
}
uint32_t node_t::refcount ()
{
uint32_t u32;
memcpy (&u32, _data, sizeof (u32));
return u32;
}
void node_t::set_refcount (uint32_t value_)
{
memcpy (_data, &value_, sizeof (value_));
}
uint32_t node_t::prefix_length ()
{
uint32_t u32;
memcpy (&u32, _data + sizeof (uint32_t), sizeof (u32));
return u32;
}
void node_t::set_prefix_length (uint32_t value_)
{
memcpy (_data + sizeof (value_), &value_, sizeof (value_));
}
uint32_t node_t::edgecount ()
{
uint32_t u32;
memcpy (&u32, _data + 2 * sizeof (uint32_t), sizeof (u32));
return u32;
}
void node_t::set_edgecount (uint32_t value_)
{
memcpy (_data + 2 * sizeof (value_), &value_, sizeof (value_));
}
unsigned char *node_t::prefix ()
{
return _data + 3 * sizeof (uint32_t);
}
void node_t::set_prefix (const unsigned char *bytes_)
{
memcpy (prefix (), bytes_, prefix_length ());
}
unsigned char *node_t::first_bytes ()
{
return prefix () + prefix_length ();
}
void node_t::set_first_bytes (const unsigned char *bytes_)
{
memcpy (first_bytes (), bytes_, edgecount ());
}
unsigned char node_t::first_byte_at (size_t index_)
{
zmq_assert (index_ < edgecount ());
return first_bytes ()[index_];
}
void node_t::set_first_byte_at (size_t index_, unsigned char byte_)
{
zmq_assert (index_ < edgecount ());
first_bytes ()[index_] = byte_;
}
unsigned char *node_t::node_pointers ()
{
return prefix () + prefix_length () + edgecount ();
}
void node_t::set_node_pointers (const unsigned char *pointers_)
{
memcpy (node_pointers (), pointers_, edgecount () * sizeof (void *));
}
node_t node_t::node_at (size_t index_)
{
zmq_assert (index_ < edgecount ());
unsigned char *data;
memcpy (&data, node_pointers () + index_ * sizeof (void *), sizeof (data));
return node_t (data);
}
void node_t::set_node_at (size_t index_, node_t node_)
{
zmq_assert (index_ < edgecount ());
memcpy (node_pointers () + index_ * sizeof (void *), &node_._data,
sizeof (node_._data));
}
void node_t::set_edge_at (size_t index_,
unsigned char first_byte_,
node_t node_)
{
set_first_byte_at (index_, first_byte_);
set_node_at (index_, node_);
}
bool node_t::operator== (node_t other_) const
{
return _data == other_._data;
}
bool node_t::operator!= (node_t other_) const
{
return !(*this == other_);
}
void node_t::resize (size_t prefix_length_, size_t edgecount_)
{
const size_t node_size = 3 * sizeof (uint32_t) + prefix_length_
+ edgecount_ * (1 + sizeof (void *));
unsigned char *new_data =
static_cast<unsigned char *> (realloc (_data, node_size));
zmq_assert (new_data);
_data = new_data;
set_prefix_length (static_cast<uint32_t> (prefix_length_));
set_edgecount (static_cast<uint32_t> (edgecount_));
}
node_t make_node (size_t refcount_, size_t prefix_length_, size_t edgecount_)
{
const size_t node_size = 3 * sizeof (uint32_t) + prefix_length_
+ edgecount_ * (1 + sizeof (void *));
unsigned char *data = static_cast<unsigned char *> (malloc (node_size));
zmq_assert (data);
node_t node (data);
node.set_refcount (static_cast<uint32_t> (refcount_));
node.set_prefix_length (static_cast<uint32_t> (prefix_length_));
node.set_edgecount (static_cast<uint32_t> (edgecount_));
return node;
}
// ----------------------------------------------------------------------
zmq::radix_tree_t::radix_tree_t () : _root (make_node (0, 0, 0)), _size (0)
{
}
static void free_nodes (node_t node_)
{
for (size_t i = 0, count = node_.edgecount (); i < count; ++i)
free_nodes (node_.node_at (i));
free (node_._data);
}
zmq::radix_tree_t::~radix_tree_t ()
{
free_nodes (_root);
}
match_result_t::match_result_t (size_t key_bytes_matched_,
size_t prefix_bytes_matched_,
size_t edge_index_,
size_t parent_edge_index_,
node_t current_,
node_t parent_,
node_t grandparent_) :
_key_bytes_matched (key_bytes_matched_),
_prefix_bytes_matched (prefix_bytes_matched_),
_edge_index (edge_index_),
_parent_edge_index (parent_edge_index_),
_current_node (current_),
_parent_node (parent_),
_grandparent_node (grandparent_)
{
}
match_result_t zmq::radix_tree_t::match (const unsigned char *key_,
size_t key_size_,
bool is_lookup_ = false) const
{
zmq_assert (key_);
// Node we're currently at in the traversal and its predecessors.
node_t current_node = _root;
node_t parent_node = current_node;
node_t grandparent_node = current_node;
// Index of the next byte to match in the key.
size_t key_byte_index = 0;
// Index of the next byte to match in the current node's prefix.
size_t prefix_byte_index = 0;
// Index of the edge from parent to current node.
size_t edge_index = 0;
// Index of the edge from grandparent to parent.
size_t parent_edge_index = 0;
while (current_node.prefix_length () > 0 || current_node.edgecount () > 0) {
const unsigned char *const prefix = current_node.prefix ();
const size_t prefix_length = current_node.prefix_length ();
for (prefix_byte_index = 0;
prefix_byte_index < prefix_length && key_byte_index < key_size_;
++prefix_byte_index, ++key_byte_index) {
if (prefix[prefix_byte_index] != key_[key_byte_index])
break;
}
// Even if a prefix of the key matches and we're doing a
// lookup, this means we've found a matching subscription.
if (is_lookup_ && prefix_byte_index == prefix_length
&& current_node.refcount () > 0) {
key_byte_index = key_size_;
break;
}
// There was a mismatch or we've matched the whole key, so
// there's nothing more to do.
if (prefix_byte_index != prefix_length || key_byte_index == key_size_)
break;
// We need to match the rest of the key. Check if there's an
// outgoing edge from this node.
node_t next_node = current_node;
for (size_t i = 0, edgecount = current_node.edgecount (); i < edgecount;
++i) {
if (current_node.first_byte_at (i) == key_[key_byte_index]) {
parent_edge_index = edge_index;
edge_index = i;
next_node = current_node.node_at (i);
break;
}
}
if (next_node == current_node)
break; // No outgoing edge.
grandparent_node = parent_node;
parent_node = current_node;
current_node = next_node;
}
return match_result_t (key_byte_index, prefix_byte_index, edge_index,
parent_edge_index, current_node, parent_node,
grandparent_node);
}
bool zmq::radix_tree_t::add (const unsigned char *key_, size_t key_size_)
{
const match_result_t match_result = match (key_, key_size_);
const size_t key_bytes_matched = match_result._key_bytes_matched;
const size_t prefix_bytes_matched = match_result._prefix_bytes_matched;
const size_t edge_index = match_result._edge_index;
node_t current_node = match_result._current_node;
node_t parent_node = match_result._parent_node;
if (key_bytes_matched != key_size_) {
// Not all characters match, we might have to split the node.
if (prefix_bytes_matched == current_node.prefix_length ()) {
// The mismatch is at one of the outgoing edges, so we
// create an edge from the current node to a new leaf node
// that has the rest of the key as the prefix.
node_t key_node = make_node (1, key_size_ - key_bytes_matched, 0);
key_node.set_prefix (key_ + key_bytes_matched);
// Reallocate for one more edge.
current_node.resize (current_node.prefix_length (),
current_node.edgecount () + 1);
// Make room for the new edge. We need to shift the chunk
// of node pointers one byte to the right. Since resize()
// increments the edgecount by 1, node_pointers() tells us the
// destination address. The chunk of node pointers starts
// at one byte to the left of this destination.
//
// Since the regions can overlap, we use memmove.
memmove (current_node.node_pointers (),
current_node.node_pointers () - 1,
(current_node.edgecount () - 1) * sizeof (void *));
// Add an edge to the new node.
current_node.set_edge_at (current_node.edgecount () - 1,
key_[key_bytes_matched], key_node);
// We need to update all pointers to the current node
// after the call to resize().
if (current_node.prefix_length () == 0)
_root._data = current_node._data;
else
parent_node.set_node_at (edge_index, current_node);
_size.add (1);
return true;
}
// There was a mismatch, so we need to split this node.
//
// Create two nodes that will be reachable from the parent.
// One node will have the rest of the characters from the key,
// and the other node will have the rest of the characters
// from the current node's prefix.
node_t key_node = make_node (1, key_size_ - key_bytes_matched, 0);
node_t split_node =
make_node (current_node.refcount (),
current_node.prefix_length () - prefix_bytes_matched,
current_node.edgecount ());
// Copy the prefix chunks to the new nodes.
key_node.set_prefix (key_ + key_bytes_matched);
split_node.set_prefix (current_node.prefix () + prefix_bytes_matched);
// Copy the current node's edges to the new node.
split_node.set_first_bytes (current_node.first_bytes ());
split_node.set_node_pointers (current_node.node_pointers ());
// Resize the current node to accommodate a prefix comprising
// the matched characters and 2 outgoing edges to the above
// nodes. Set the refcount to 0 since this node doesn't hold a
// key.
current_node.resize (prefix_bytes_matched, 2);
current_node.set_refcount (0);
// Add links to the new nodes. We don't need to copy the
// prefix since resize() retains it in the current node.
current_node.set_edge_at (0, key_node.prefix ()[0], key_node);
current_node.set_edge_at (1, split_node.prefix ()[0], split_node);
_size.add (1);
parent_node.set_node_at (edge_index, current_node);
return true;
}
// All characters in the key match, but we still might need to split.
if (prefix_bytes_matched != current_node.prefix_length ()) {
// All characters in the key match, but not all characters
// from the current node's prefix match.
// Create a node that contains the rest of the characters from
// the current node's prefix and the outgoing edges from the
// current node.
node_t split_node =
make_node (current_node.refcount (),
current_node.prefix_length () - prefix_bytes_matched,
current_node.edgecount ());
split_node.set_prefix (current_node.prefix () + prefix_bytes_matched);
split_node.set_first_bytes (current_node.first_bytes ());
split_node.set_node_pointers (current_node.node_pointers ());
// Resize the current node to hold only the matched characters
// from its prefix and one edge to the new node.
current_node.resize (prefix_bytes_matched, 1);
// Add an edge to the split node and set the refcount to 1
// since this key wasn't inserted earlier. We don't need to
// set the prefix because the first `prefix_bytes_matched` bytes
// in the prefix are preserved by resize().
current_node.set_edge_at (0, split_node.prefix ()[0], split_node);
current_node.set_refcount (1);
_size.add (1);
parent_node.set_node_at (edge_index, current_node);
return true;
}
zmq_assert (key_bytes_matched == key_size_);
zmq_assert (prefix_bytes_matched == current_node.prefix_length ());
_size.add (1);
current_node.set_refcount (current_node.refcount () + 1);
return current_node.refcount () == 1;
}
bool zmq::radix_tree_t::rm (const unsigned char *key_, size_t key_size_)
{
const match_result_t match_result = match (key_, key_size_);
const size_t key_bytes_matched = match_result._key_bytes_matched;
const size_t prefix_bytes_matched = match_result._prefix_bytes_matched;
const size_t edge_index = match_result._edge_index;
const size_t parent_edge_index = match_result._parent_edge_index;
node_t current_node = match_result._current_node;
node_t parent_node = match_result._parent_node;
node_t grandparent_node = match_result._grandparent_node;
if (key_bytes_matched != key_size_
|| prefix_bytes_matched != current_node.prefix_length ()
|| current_node.refcount () == 0)
return false;
current_node.set_refcount (current_node.refcount () - 1);
_size.sub (1);
if (current_node.refcount () > 0)
return false;
// Don't delete the root node.
if (current_node == _root)
return true;
const size_t outgoing_edges = current_node.edgecount ();
if (outgoing_edges > 1)
// This node can't be merged with any other node, so there's
// nothing more to do.
return true;
if (outgoing_edges == 1) {
// Merge this node with the single child node.
node_t child = current_node.node_at (0);
// Make room for the child node's prefix and edges. We need to
// keep the old prefix length since resize() will overwrite
// it.
const uint32_t old_prefix_length = current_node.prefix_length ();
current_node.resize (old_prefix_length + child.prefix_length (),
child.edgecount ());
// Append the child node's prefix to the current node.
memcpy (current_node.prefix () + old_prefix_length, child.prefix (),
child.prefix_length ());
// Copy the rest of child node's data to the current node.
current_node.set_first_bytes (child.first_bytes ());
current_node.set_node_pointers (child.node_pointers ());
current_node.set_refcount (child.refcount ());
free (child._data);
parent_node.set_node_at (edge_index, current_node);
return true;
}
if (parent_node.edgecount () == 2 && parent_node.refcount () == 0
&& parent_node != _root) {
// Removing this node leaves the parent with one child.
// If the parent doesn't hold a key or if it isn't the root,
// we can merge it with its single child node.
zmq_assert (edge_index < 2);
node_t other_child = parent_node.node_at (!edge_index);
// Make room for the child node's prefix and edges. We need to
// keep the old prefix length since resize() will overwrite
// it.
const uint32_t old_prefix_length = parent_node.prefix_length ();
parent_node.resize (old_prefix_length + other_child.prefix_length (),
other_child.edgecount ());
// Append the child node's prefix to the current node.
memcpy (parent_node.prefix () + old_prefix_length,
other_child.prefix (), other_child.prefix_length ());
// Copy the rest of child node's data to the current node.
parent_node.set_first_bytes (other_child.first_bytes ());
parent_node.set_node_pointers (other_child.node_pointers ());
parent_node.set_refcount (other_child.refcount ());
free (current_node._data);
free (other_child._data);
grandparent_node.set_node_at (parent_edge_index, parent_node);
return true;
}
// This is a leaf node that doesn't leave its parent with one
// outgoing edge. Remove the outgoing edge to this node from the
// parent.
zmq_assert (outgoing_edges == 0);
// Replace the edge to the current node with the last edge. An
// edge consists of a byte and a pointer to the next node. First
// replace the byte.
const size_t last_index = parent_node.edgecount () - 1;
const unsigned char last_byte = parent_node.first_byte_at (last_index);
const node_t last_node = parent_node.node_at (last_index);
parent_node.set_edge_at (edge_index, last_byte, last_node);
// Move the chunk of pointers one byte to the left, effectively
// deleting the last byte in the region of first bytes by
// overwriting it.
memmove (parent_node.node_pointers () - 1, parent_node.node_pointers (),
parent_node.edgecount () * sizeof (void *));
// Shrink the parent node to the new size, which "deletes" the
// last pointer in the chunk of node pointers.
parent_node.resize (parent_node.prefix_length (),
parent_node.edgecount () - 1);
// Nothing points to this node now, so we can reclaim it.
free (current_node._data);
if (parent_node.prefix_length () == 0)
_root._data = parent_node._data;
else
grandparent_node.set_node_at (parent_edge_index, parent_node);
return true;
}
bool zmq::radix_tree_t::check (const unsigned char *key_, size_t key_size_)
{
if (_root.refcount () > 0)
return true;
match_result_t match_result = match (key_, key_size_, true);
return match_result._key_bytes_matched == key_size_
&& match_result._prefix_bytes_matched
== match_result._current_node.prefix_length ()
&& match_result._current_node.refcount () > 0;
}
static void
visit_keys (node_t node_,
std::vector<unsigned char> &buffer_,
void (*func_) (unsigned char *data_, size_t size_, void *arg_),
void *arg_)
{
const size_t prefix_length = node_.prefix_length ();
buffer_.reserve (buffer_.size () + prefix_length);
std::copy (node_.prefix (), node_.prefix () + prefix_length,
std::back_inserter (buffer_));
if (node_.refcount () > 0) {
zmq_assert (!buffer_.empty ());
func_ (&buffer_[0], buffer_.size (), arg_);
}
for (size_t i = 0, edgecount = node_.edgecount (); i < edgecount; ++i) {
visit_keys (node_.node_at (i), buffer_, func_, arg_);
}
buffer_.resize (static_cast<uint32_t> (buffer_.size () - prefix_length));
}
void zmq::radix_tree_t::apply (
void (*func_) (unsigned char *data_, size_t size_, void *arg_), void *arg_)
{
if (_root.refcount () > 0)
func_ (NULL, 0, arg_); // Root node is always empty.
std::vector<unsigned char> buffer;
for (size_t i = 0; i < _root.edgecount (); ++i)
visit_keys (_root.node_at (i), buffer, func_, arg_);
}
size_t zmq::radix_tree_t::size () const
{
return _size.get ();
}