forked from zeromq/libzmq
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathyqueue.hpp
executable file
·188 lines (167 loc) · 5.77 KB
/
yqueue.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
/* SPDX-License-Identifier: MPL-2.0 */
#ifndef __ZMQ_YQUEUE_HPP_INCLUDED__
#define __ZMQ_YQUEUE_HPP_INCLUDED__
#include <stdlib.h>
#include <stddef.h>
#include "err.hpp"
#include "atomic_ptr.hpp"
#include "platform.hpp"
namespace zmq
{
// yqueue is an efficient queue implementation. The main goal is
// to minimise number of allocations/deallocations needed. Thus yqueue
// allocates/deallocates elements in batches of N.
//
// yqueue allows one thread to use push/back function and another one
// to use pop/front functions. However, user must ensure that there's no
// pop on the empty queue and that both threads don't access the same
// element in unsynchronised manner.
//
// T is the type of the object in the queue.
// N is granularity of the queue (how many pushes have to be done till
// actual memory allocation is required).
#if defined HAVE_POSIX_MEMALIGN
// ALIGN is the memory alignment size to use in the case where we have
// posix_memalign available. Default value is 64, this alignment will
// prevent two queue chunks from occupying the same CPU cache line on
// architectures where cache lines are <= 64 bytes (e.g. most things
// except POWER). It is detected at build time to try to account for other
// platforms like POWER and s390x.
template <typename T, int N, size_t ALIGN = ZMQ_CACHELINE_SIZE> class yqueue_t
#else
template <typename T, int N> class yqueue_t
#endif
{
public:
// Create the queue.
inline yqueue_t ()
{
_begin_chunk = allocate_chunk ();
alloc_assert (_begin_chunk);
_begin_pos = 0;
_back_chunk = NULL;
_back_pos = 0;
_end_chunk = _begin_chunk;
_end_pos = 0;
}
// Destroy the queue.
inline ~yqueue_t ()
{
while (true) {
if (_begin_chunk == _end_chunk) {
free (_begin_chunk);
break;
}
chunk_t *o = _begin_chunk;
_begin_chunk = _begin_chunk->next;
free (o);
}
chunk_t *sc = _spare_chunk.xchg (NULL);
free (sc);
}
// Returns reference to the front element of the queue.
// If the queue is empty, behaviour is undefined.
inline T &front () { return _begin_chunk->values[_begin_pos]; }
// Returns reference to the back element of the queue.
// If the queue is empty, behaviour is undefined.
inline T &back () { return _back_chunk->values[_back_pos]; }
// Adds an element to the back end of the queue.
inline void push ()
{
_back_chunk = _end_chunk;
_back_pos = _end_pos;
if (++_end_pos != N)
return;
chunk_t *sc = _spare_chunk.xchg (NULL);
if (sc) {
_end_chunk->next = sc;
sc->prev = _end_chunk;
} else {
_end_chunk->next = allocate_chunk ();
alloc_assert (_end_chunk->next);
_end_chunk->next->prev = _end_chunk;
}
_end_chunk = _end_chunk->next;
_end_pos = 0;
}
// Removes element from the back end of the queue. In other words
// it rollbacks last push to the queue. Take care: Caller is
// responsible for destroying the object being unpushed.
// The caller must also guarantee that the queue isn't empty when
// unpush is called. It cannot be done automatically as the read
// side of the queue can be managed by different, completely
// unsynchronised thread.
inline void unpush ()
{
// First, move 'back' one position backwards.
if (_back_pos)
--_back_pos;
else {
_back_pos = N - 1;
_back_chunk = _back_chunk->prev;
}
// Now, move 'end' position backwards. Note that obsolete end chunk
// is not used as a spare chunk. The analysis shows that doing so
// would require free and atomic operation per chunk deallocated
// instead of a simple free.
if (_end_pos)
--_end_pos;
else {
_end_pos = N - 1;
_end_chunk = _end_chunk->prev;
free (_end_chunk->next);
_end_chunk->next = NULL;
}
}
// Removes an element from the front end of the queue.
inline void pop ()
{
if (++_begin_pos == N) {
chunk_t *o = _begin_chunk;
_begin_chunk = _begin_chunk->next;
_begin_chunk->prev = NULL;
_begin_pos = 0;
// 'o' has been more recently used than _spare_chunk,
// so for cache reasons we'll get rid of the spare and
// use 'o' as the spare.
chunk_t *cs = _spare_chunk.xchg (o);
free (cs);
}
}
private:
// Individual memory chunk to hold N elements.
struct chunk_t
{
T values[N];
chunk_t *prev;
chunk_t *next;
};
static inline chunk_t *allocate_chunk ()
{
#if defined HAVE_POSIX_MEMALIGN
void *pv;
if (posix_memalign (&pv, ALIGN, sizeof (chunk_t)) == 0)
return (chunk_t *) pv;
return NULL;
#else
return static_cast<chunk_t *> (malloc (sizeof (chunk_t)));
#endif
}
// Back position may point to invalid memory if the queue is empty,
// while begin & end positions are always valid. Begin position is
// accessed exclusively be queue reader (front/pop), while back and
// end positions are accessed exclusively by queue writer (back/push).
chunk_t *_begin_chunk;
int _begin_pos;
chunk_t *_back_chunk;
int _back_pos;
chunk_t *_end_chunk;
int _end_pos;
// People are likely to produce and consume at similar rates. In
// this scenario holding onto the most recently freed chunk saves
// us from having to call malloc/free.
atomic_ptr_t<chunk_t> _spare_chunk;
ZMQ_NON_COPYABLE_NOR_MOVABLE (yqueue_t)
};
}
#endif