-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathface_recognition.py
61 lines (45 loc) · 1.64 KB
/
face_recognition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import cv2
import numpy as np
import os
recognizer = cv2.face.LBPHFaceRecognizer_create()
recognizer.read('trainer/trainer.yml')
faceCascade = cv2.CascadeClassifier('cascades/haarcascade_frontalface_default.xml')
font = cv2.FONT_HERSHEY_SIMPLEX
id = 0
names = ['None']
cam = cv2.VideoCapture(0)
cam.set(3, 640) # set video widht
cam.set(4, 480) # set video height
# Define min window size to be recognized as a face
minW = 0.1*cam.get(3)
minH = 0.1*cam.get(4)
while True:
ret, img =cam.read()
img = cv2.flip(img, 1)
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
faces = faceCascade.detectMultiScale(
gray,
scaleFactor = 1.2,
minNeighbors = 5,
minSize = (int(minW), int(minH)),
)
for(x,y,w,h) in faces:
cv2.rectangle(img, (x,y), (x+w,y+h), (0,255,0), 2)
id, confidence = recognizer.predict(gray[y:y+h,x:x+w])
print("id:{} => conf: {}".format(id, confidence))
# Check if confidence is less them 100 ==> "0" is perfect match
if confidence < 100 and confidence > 50:
id = names[id]
confidence = "{0}%".format(round(100 - confidence))
else:
id = "unknown"
confidence = "{0}%".format(round(100 - confidence))
cv2.putText(img, str(id), (x+5,y-10), font, 0.5, (0,255,0), 2)
cv2.putText(img, "confidence: " + str(confidence), (x+5, y + 20), font, 0.5, (255,255,0), 1)
cv2.imshow('camera',img)
k = cv2.waitKey(10) & 0xff # Press 'ESC' for exiting video
if k == 27:
break
print("\n [INFO] Exiting Program and cleanup stuff")
cam.release()
cv2.destroyAllWindows()