-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathface_trainer.py
34 lines (26 loc) · 1.04 KB
/
face_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import cv2
import numpy as np
from PIL import Image
import os
# Path for face image database
path = 'dataset'
recognizer = cv2.face.LBPHFaceRecognizer_create()
detector = cv2.CascadeClassifier("cascades/haarcascade_frontalface_default.xml")
def getImagesAndLabels(path):
imagePaths = [os.path.join(path,f) for f in os.listdir(path)]
faceSamples=[]
ids = []
for imagePath in imagePaths:
PIL_img = Image.open(imagePath).convert('L') # convert it to grayscale
img_numpy = np.array(PIL_img,'uint8')
id = int(os.path.split(imagePath)[-1].split(".")[1])
faces = detector.detectMultiScale(img_numpy)
for (x,y,w,h) in faces:
faceSamples.append(img_numpy[y:y+h,x:x+w])
ids.append(id)
return faceSamples,ids
print ("\n[INFO]Training faces. It will take a few seconds. Wait ...")
faces, ids = getImagesAndLabels(path)
recognizer.train(faces, np.array(ids))
recognizer.write('trainer/trainer.yml')
print("\n[INFO]{0} faces trained. Exiting Program".format(len(np.unique(ids))))