forked from frankligy/DeepImmuno
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeepimmuno-gan.py
308 lines (261 loc) · 11.4 KB
/
deepimmuno-gan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
'''
Program to run deepimmuno-GAN to generate Pseudo-immunogenic sequences for HLA-A*0201
'''
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import pandas as pd
import argparse
import os
# build the model
class ResBlock(nn.Module):
def __init__(self, hidden): # hidden means the number of filters
super(ResBlock, self).__init__()
self.res_block = nn.Sequential(
nn.ReLU(True), # in_place = True
nn.Conv1d(hidden, hidden, kernel_size=3, padding=1),
nn.ReLU(True),
nn.Conv1d(hidden, hidden, kernel_size=3, padding=1),
)
def forward(self, input): # input [N, hidden, seq_len]
output = self.res_block(input)
return input + 0.3 * output # [N, hidden, seq_len] doesn't change anything
class Generator(nn.Module):
def __init__(self, hidden, seq_len, n_chars, batch_size):
super(Generator, self).__init__()
self.fc1 = nn.Linear(128, hidden * seq_len)
self.block = nn.Sequential(
ResBlock(hidden),
ResBlock(hidden),
ResBlock(hidden),
ResBlock(hidden),
ResBlock(hidden),
)
self.conv1 = nn.Conv1d(hidden, n_chars, kernel_size=1)
self.hidden = hidden
self.seq_len = seq_len
self.n_chars = n_chars
self.batch_size = batch_size
def forward(self, noise): # noise [batch,128]
output = self.fc1(noise) # [batch,hidden*seq_len]
output = output.view(-1, self.hidden, self.seq_len) # [batch,hidden,seq_len]
output = self.block(output) # [batch,hidden,seq_len]
output = self.conv1(output) # [batch,n_chars,seq_len]
'''
In order to understand the following step, you have to understand how torch.view actually work, it basically
alloacte all entry into the resultant tensor of shape you specified. line by line, then layer by layer.
Also, contiguous is to make sure the memory is contiguous after transpose, make sure it will be the same as
being created form stracth
'''
output = output.transpose(1, 2) # [batch,seq_len,n_chars]
output = output.contiguous()
output = output.view(self.batch_size * self.seq_len, self.n_chars)
output = F.gumbel_softmax(output, tau=0.75,
hard=False) # github code tau=0.5, paper tau=0.75 [batch*seq_len,n_chars]
output = output.view(self.batch_size, self.seq_len, self.n_chars) # [batch,seq_len,n_chars]
return output
class Discriminator(nn.Module):
def __init__(self, hidden, n_chars, seq_len):
super(Discriminator, self).__init__()
self.block = nn.Sequential(
ResBlock(hidden),
ResBlock(hidden),
ResBlock(hidden),
ResBlock(hidden),
ResBlock(hidden),
)
self.conv1 = nn.Conv1d(n_chars, hidden, 1)
self.fc = nn.Linear(seq_len * hidden, 1)
self.hidden = hidden
self.n_chars = n_chars
self.seq_len = seq_len
def forward(self, input): # input [N,seq_len,n_chars]
output = input.transpose(1, 2) # input [N, n_chars, seq_len]
output = output.contiguous()
output = self.conv1(output) # [N,hidden,seq_len]
output = self.block(output) # [N, hidden, seq_len]
output = output.view(-1, self.seq_len * self.hidden) # [N, hidden*seq_len]
output = self.fc(output) # [N,1]
return output
# define dataset
class real_dataset_class(torch.utils.data.Dataset):
def __init__(self, raw, seq_len, n_chars): # raw is a ndarray ['ARRRR','NNNNN']
self.raw = raw
self.seq_len = seq_len
self.n_chars = n_chars
self.post = self.process()
def process(self):
result = torch.empty(len(self.raw), self.seq_len, self.n_chars) # [N,seq_len,n_chars]
amino = 'ARNDCQEGHILKMFPSTWYV-'
identity = torch.eye(n_chars)
for i in range(len(self.raw)):
pep = self.raw[i]
if len(pep) == 9:
pep = pep[0:4] + '-' + pep[4:]
inner = torch.empty(len(pep), self.n_chars)
for p in range(len(pep)):
inner[p] = identity[amino.index(pep[p].upper()), :]
encode = torch.tensor(inner) # [seq_len,n_chars]
result[i] = encode
return result
def __getitem__(self, index):
return self.post[index]
def __len__(self):
return self.post.shape[0]
# auxiliary function during training GAN
def sample_generator(batch_size):
batch_size = 64
lr = 0.0001
num_epochs = 100
seq_len = 10
hidden = 128
n_chars = 21
d_steps = 10
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
G = Generator(hidden,seq_len,n_chars,batch_size).to(device)
G.load_state_dict(torch.load('./models/wassGAN_G.pth'))
noise = torch.randn(batch_size, 128).to(device) # [N, 128]
generated_data = G(noise) # [N, seq_len, n_chars]
return generated_data
def calculate_gradient_penalty(real_data, fake_data, lambda_=10):
alpha = torch.rand(batch_size, 1, 1).to(device)
alpha = alpha.expand_as(real_data) # [N,seq_len,n_chars]
interpolates = alpha * real_data + (1 - alpha) * fake_data # [N,seq_len,n_chars]
interpolates = torch.autograd.Variable(interpolates, requires_grad=True)
disc_interpolates = D(interpolates)
# below, grad function will return a tuple with length one, so only take [0], it will be a tensor of shape inputs, gradient wrt each input
gradients = torch.autograd.grad(outputs=disc_interpolates, inputs=interpolates,
grad_outputs=torch.ones(disc_interpolates.size()), create_graph=True,
retain_graph=True)[0]
gradients = gradients.contiguous().view(batch_size, -1) # [N, seq_len*n_chars]
gradients_norm = torch.sqrt(torch.sum(gradients ** 2, dim=1) + 1e-12) # [N,]
gradient_penalty = lambda_ * ((gradients_norm - 1) ** 2).mean() # []
return gradient_penalty
def discriminator_train(real_data):
D_optimizer.zero_grad()
fake_data = sample_generator(batch_size) # generate a mini-batch of fake data
d_fake_pred = D(fake_data) # what's the prediction you get via discriminator
d_fake_error = d_fake_pred.mean() # compute mean, return a scalar value
d_real_pred = D(real_data) # what's the prediction you get for real data via discriminator
d_real_error = d_real_pred.mean() # compute mean
gradient_penalty = calculate_gradient_penalty(real_data, fake_data) # calculate gradient penalty
d_error_total = d_fake_error - d_real_error + gradient_penalty # [] # total error, you want to minimize this, so you hope fake image be more real
w_dist = d_real_error - d_fake_error
d_error_total.backward()
D_optimizer.step()
return d_fake_error, d_real_error, gradient_penalty, d_error_total, w_dist
def generator_train():
G_optimizer.zero_grad()
g_fake_data = sample_generator(batch_size)
dg_fake_pred = D(g_fake_data)
g_error_total = -torch.mean(dg_fake_pred)
g_error_total.backward()
G_optimizer.step()
return g_error_total
# processing function from previous code
def peptide_data_aaindex(peptide, after_pca): # return numpy array [10,12,1]
length = len(peptide)
if length == 10:
encode = aaindex(peptide, after_pca)
elif length == 9:
peptide = peptide[:5] + '-' + peptide[5:]
encode = aaindex(peptide, after_pca)
encode = encode.reshape(encode.shape[0], encode.shape[1], -1)
return encode
def dict_inventory(inventory):
dicA, dicB, dicC = {}, {}, {}
dic = {'A': dicA, 'B': dicB, 'C': dicC}
for hla in inventory:
type_ = hla[4] # A,B,C
first2 = hla[6:8] # 01
last2 = hla[8:] # 01
try:
dic[type_][first2].append(last2)
except KeyError:
dic[type_][first2] = []
dic[type_][first2].append(last2)
return dic
def rescue_unknown_hla(hla, dic_inventory):
type_ = hla[4]
first2 = hla[6:8]
last2 = hla[8:]
big_category = dic_inventory[type_]
# print(hla)
if not big_category.get(first2) == None:
small_category = big_category.get(first2)
distance = [abs(int(last2) - int(i)) for i in small_category]
optimal = min(zip(small_category, distance), key=lambda x: x[1])[0]
return 'HLA-' + str(type_) + '*' + str(first2) + str(optimal)
else:
small_category = list(big_category.keys())
distance = [abs(int(first2) - int(i)) for i in small_category]
optimal = min(zip(small_category, distance), key=lambda x: x[1])[0]
return 'HLA-' + str(type_) + '*' + str(optimal) + str(big_category[optimal][0])
def hla_data_aaindex(hla_dic, hla_type, after_pca): # return numpy array [34,12,1]
try:
seq = hla_dic[hla_type]
except KeyError:
hla_type = rescue_unknown_hla(hla_type, dic_inventory)
seq = hla_dic[hla_type]
encode = aaindex(seq, after_pca)
encode = encode.reshape(encode.shape[0], encode.shape[1], -1)
return encode
def construct_aaindex(ori, hla_dic, after_pca):
series = []
for i in range(ori.shape[0]):
peptide = ori['peptide'].iloc[i]
hla_type = ori['HLA'].iloc[i]
immuno = np.array(ori['immunogenicity'].iloc[i]).reshape(1, -1) # [1,1]
'''
If 'classfication': ['immunogenicity']
If 'regression': ['potential']
'''
encode_pep = peptide_data_aaindex(peptide, after_pca) # [10,12]
encode_hla = hla_data_aaindex(hla_dic, hla_type, after_pca) # [46,12]
series.append((encode_pep, encode_hla, immuno))
return series
def hla_df_to_dic(hla):
dic = {}
for i in range(hla.shape[0]):
col1 = hla['HLA'].iloc[i] # HLA allele
col2 = hla['pseudo'].iloc[i] # pseudo sequence
dic[col1] = col2
return dic
def aaindex(peptide, after_pca):
amino = 'ARNDCQEGHILKMFPSTWYV-'
matrix = np.transpose(after_pca) # [12,21]
encoded = np.empty([len(peptide), 12]) # (seq_len,12)
for i in range(len(peptide)):
query = peptide[i]
if query == 'X': query = '-'
query = query.upper()
encoded[i, :] = matrix[:, amino.index(query)]
return encoded
# post utils functions
def inverse_transform(hard): # [N,seq_len]
amino = 'ARNDCQEGHILKMFPSTWYV-'
result = []
for row in hard:
temp = ''
for col in row:
aa = amino[col]
temp += aa
result.append(temp)
return result
def main(args):
#batch= args.batch
outdir = args.outdir
print("outdir is {}".format(outdir))
generation = sample_generator(64).detach().cpu().numpy() # [N,seq_len,n_chars]
hard = np.argmax(generation, axis=2) # [N,seq_len]
pseudo = inverse_transform(hard)
df = pd.DataFrame({'peptide': pseudo, 'HLA': ['HLA-A*0201' for i in range(len(pseudo))],
'immunogenicity': [1 for i in range(len(pseudo))]})
df.to_csv(os.path.join(outdir,'deepimmuno-GAN-result.txt'),sep='\t',index=None)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='DeepImmuno-GAN to generate immunogenic peptide')
#parser.add_argument('--batch',type=str,default=1,help='how many sequences you''d like? one batch is 64')
parser.add_argument('--outdir',type=str,default='.',help='specifying your output folder')
args = parser.parse_args()
main(args)